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(a) Prove that the von Neumann entropy is subadditive, i.e.

S (ρAB) 6 S (ρA) + S (ρB) , (1)

where ρAB is the density matrix of a bipartite system AB and ρA, ρB are the
reduced density matrices of the two subsystems A and B respectively.

(b) Using the bound (1) or otherwise, prove the concavity of the von Neumann entropy

S

( r∑
i=1

pi ρi

)
>

r∑
i=1

pi S (ρi) ,

where pi > 0 ,
∑r

i=1 pi = 1 and ρi , (i = 1, . . . , r) are density matrices.

(c) Consider a quantum system A which is in a state ρi with probability pi , and let
σ be some other density matrix acting on the Hilbert Space HA of the system A .
Prove that ∑

i

pi S ( ρi ||σ) =
∑

i

pi S ( ρi || ρ̄) + S ( ρ̄ ||σ) . (2)

In the above, ρ̄ :=
∑

i piρi and the notation S (ω ||σ) denotes the relative entropy
of the states ω and σ .

Paper 34



3

2 Consider a quantum information source defined by a sequence of density matrices
ρ(n) acting on Hilbert spaces H⊗n, and given by

ρ (n) =
∑

k

p
(n)
k |Ψ(n)

k 〉 〈Ψ(n)
k | , (3)

with p
(n)
k > 0 and

∑
k p

(n)
k = 1 . Here H denotes the Hilbert space of a single qubit.

Note that the state vectors |Ψ(n)
k 〉 need not be mutually orthogonal.

(a) State a compression–decompression scheme C(n)-D(n) for such a source and define
the corresponding rate of compression. Define the ensemble average fidelity Fn and
state a condition under which the compression-decompression scheme is considered
to be reliable.

If the density matrix ρ (n) given by (3) satisfies the relation

ρ (n) = π⊗n , (4)

where π is a density matrix acting in the Hilbert Space H, then the quantum
information source is said to be memoryless.

(b) Express the eigenvalues, eigenstates and von Neumann entropy of ρ(n) in terms of
the corresponding quantities of the density matrix π.

(c) For any given ε > 0, define the ε-typical subspace T (n)
ε of ρ(n) and state the Typical

Subspace Theorem.

(d) Define a compression–decompression scheme for such a source, for which the
ensemble average fidelity Fn satisfies the bound

Fn ≥ 2
∑

k

p
(n)
k α2

k − 1 , (5)

where αk := ||P (n)
ε |Ψ(n)

k 〉||, with P
(n)
ε being the orthogonal projection onto T (n)

ε .

(e) Using the above bound (5) and the Typical Subspace Theorem, prove that if
R > S(π) then there exists a reliable compression scheme of rate R, for the
memoryless source given by (4). Here S(π) denotes the von Neumann entropy
of the state π.
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3 The action of the depolarizing channel on the state ρ of a qubit is given by

Φ(ρ) = (1− p)ρ +
p

3
(σxρxσx + σyρσy + σzρσz), (6)

where 0 < p < 1 and σx, σy and σz are the Pauli matrices.

(a) Prove that the depolarizing channel can alternatively be expressed as follows, for
some 0 < q < 1:

Φ(ρ) = (1− q)ρ + q
I
2

, (7)

where I is the identity operator acting on the single qubit Hilbert space. Hence
find the relation between p and q.

(b) Derive the effect of the depolarizing channel on the Bloch sphere, hence justifying
its name.

(c) Write an expression for the Holevo χ quantity for an ensemble of quantum states
E := {pi, ρi}. Express χ(E) in terms of the relative entropy and prove that it can
never increase under a quantum operation.

(d) State the Holevo–Schumacher–Westmoreland (HSW) Theorem and use it to derive
the product state capacity of a qubit depolarizing channel with parameter q, defined
by (7).
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(a) Let HA, HB be two Hilbert Spaces, each of dimension d. Write an expression for
a maximally entangled state |ΨAB〉, of size d, in the Hilbert Space HA ⊗HB and
explain why it is said to be maximally entangled.

(b) Prove that any arbitrary vector |φA〉 ∈ HA can be expressed in terms of the
maximally entangled state |ΨAB〉, as follows:

|φA〉 = 〈φ∗
B |Ψ̃AB〉 , (8)

via the relative state method. Here |Ψ̃AB〉 :=
√

d|ΨAB〉, and |φ∗
B〉 is the index state

in HB that yields |φA〉.

(c) Prove that the pure state resulting from the action of any arbitrary operator MA

on a state vector |φA〉 ∈ HA can be obtained as a relative state from the state
(MA ⊗ IB)|Ψ̃AB〉.

(d) It can be shown that if ΦA : B(HA) 7→ B(HA) is a linear, completely positive
trace–preserving (CPT) map, then

ΦA(|φA〉〈φA|) = 〈φ∗
B |(ΦA ⊗ idB)(|Ψ̃AB〉〈Ψ̃AB |)|φ∗

B〉 . (9)

Using this result, prove that any linear CPT map, ΦA, can be written in the Kraus
form, i.e.,

ΦA(ρ) =
∑

k

AkρA†
k ,

for any ρ ∈ B(HA), where the Ak are linear operators in B(HA), satisfying∑
k

A†
kAk = IA ,

with IA being the identity operator in B(HA).
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(a) State the generalized measurement postulate and state the condition under which
it reduces to a projective measurement.

(b) Suppose a projective measurement described by a set of projection operators {Pi} is
performed on a quantum system, but we never learn the result of the measurement.
If the state of the system before the measurement was ρ then the state after the
measurement is given by

ρ′ =
∑

i

PiρPi .

Prove that the entropy of this final state is at least as great as the original entropy:

S(ρ′) ≥ S(ρ) ,

with equality if and only if ρ = ρ′.

(c) Consider a qubit which is in the state ρ with Bloch vector ~s = (1/3, 1/2, 1/5). What
is the probability that a projective measurement of the spin of the qubit along the
Z–axis will yield a value +1?
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