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MODULAR REPRESENTATIONS OF FINITE GROUPS

Attempt THREE questions.
There are SIX questions in total.

The questions carry equal weight.

In this paper G is a finite group. In the usual notation
we are given a p-modular system (K, O, k) where
p is a prime dividing |G|. Throughout R € {O, k}.
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1 Define a block of RG both in terms of ideal direct summands and idempotents. Ex-
plain how the two definitions are equivalent. Explain what it means for an indecomposable
RG-module to lie in a block. Describe how the blocks over k& and over O are related.

Defining clearly any terms that you use, define the defect group and the defect
of a block B. If B is a block with defect group D prove Green’s result that every
indecomposable RG-module in the block is projective relative to D. Finally, prove that if
B is a block of kG and B is the corresponding block of OG then B and B have the same
defect groups.

2 State and prove Brauer’s First Main Theorem (if you use any results in the proof
you should state them clearly). If DC¢(D) < H < G (but with no other restriction on H)
and b is a p-block of kH, use the First Main Theorem to define the Brauer correspondent
bC of b. In this case prove that b may be characterised as the unique block B of kG such
that B | gx g has b as a direct summand viewed as a k(H x H)-module.

3 For a fixed p-subgroup D of G, state and prove the Green Correspondence between
blocks of RG and blocks of certain subgroups of G related to D. If you use any lemma
you should prove it.

Take R = k. Use the Mackey Decomposition and Maschke’s Theorem to give a
direct proof of the Green Correspondence in the situation where a Sylow p-subgroup D
of G is a T.I. set, namely, D satisfies D N9D = 1 or D for ¢ € G. Namely, prove
that if M is an indecomposable non-projective kNg(D)-module then M 1¢ has a unique
non-projective indecomposable summand, i.e.

M 192 My ® My,

where M is projective and My is non-projective. [Standard facts about projective modules
may be assumed.]

4 State Nagao’s version of Brauer’s Second Main Theorem.

Use it to deduce that if B is a block with defect group D then there exists an
indecomposable kG-module lying in B with vertex D and a trivial source.

Recall that a block B is said to be of finite representation type if there are only
finitely many isomorphism classes of indecomposable modules in B. Deduce that if B is a
block with defect group D, then B has finite representation type if and only if D is cyclic.

Classify the indecomposable modules for a cyclic group of order p in characteristic
p. Find the unique composition series for each indecomposable module and identify the
principal indecomposable module.
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5 Define the principal block of kG. State and prove Brauer’s Third Main Theorem.

Denote the maximal normal p-subgroup of G by O,(G), and the maximal normal
p/-subgroup (i.e. of order coprime to p) by O,/ (G). Let H = G/Op (G). We say that G is
p-constrained if Cp(O,(H)) < Op(H). Let x € G be a p-element such that O, (Cg(z)) =1
and Cg(z) is p-constrained. Let B be a block of kG with defect group D. Use the Third
Main Theorem to prove that x is G-congugate to an element of D if and only if B is the
principal block of G.

6 Let B be a p-block of kG with cyclic defect group D of order p™ (n > 1). Define
the inertial index e of B. Assume that k is algebraically closed. Stating clearly any results

you use, show that there are e simple modules in B and p™e indecomposable modules in
B.

Let k£ be an algebraically closed field of characteristic 2. Suppose that B is a block
of kG whose defect group is a Klein four group Z, x Zy. Use the Extended First Main
Theorem to show that e = 1 or 3. If e = 1 and D is normal in G prove that B is a
complete matrix algebra Mat,, (kD) of some degree n. You should state clearly any results
that you use. [HINT: it may be useful to consider separately the cases when D is central
in G and when D is normal but not central in G']

END OF PAPER
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