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PAPER 28

LOCAL FIELDS

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

Qp denotes the field of p-adic numbers, Fp the field with p elements, and ζn a
primitive nth root of unity.
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1 Suppose K is a field, v : K � Z ∪ {∞} a normalised discrete valuation, and let
R = {x ∈ K | v(x) ≥ 0}.

(a) Prove that R is a ring, specifically a local integral domain, every ideal of R is
principal, and K is the field of fractions of R.

(b) Denote the maximal ideal of R by m, pick a uniformiser π, and suppose A is a
complete set of representatives for R/m. Prove that every non-zero element of K can be
written uniquely as a series of the form

∞∑
n=n0

anπn, an ∈ A, an0 6∈ m,

convergent in the topology of K induced by the valuation. Conversely, does every series
of this form converge?

2 (a) State and prove a version of Hensel’s lemma.

(b) Determine Gal(Qp(ζ8)/Qp) for every prime p.

3 (a) Suppose (K, | · |) is a complete non-Archimedean field. Prove that for every
finite extension L/K, there is at most one extension of | · | to an absolute value on L. (You
do not have to prove that such an extension exists.)

(b) Write down an absolute value | · | on K = Fp((t)) whose ring of integers is
Fp[[t]]. Now let e, f ≥ 1 be integers. Construct an extension L/K of residue degree f and
ramification degree e, and determine explicitly the unique extension of | · | to it.

4 Let p be an odd prime.

(a) Show that the polynomial (1+T )p−1
T ∈ Qp[T ] is Eisenstein, and deduce that

Qp(ζp)/Qp is totally ramified of degree p− 1.

(b) Let K = Qp(ζp, p
√

p). Prove that K/Qp is Galois, totally ramified of degree
p(p − 1), write down a uniformiser of K, and determine the size of every ramification
subgroup Gi of Gal(K/Qp).
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