MATHEMATICAL TRIPOS Part III

Friday 8 June 2007 9.00 to 12.00

PAPER 27

ELLIPTIC CURVES

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let E_d be the elliptic curve

$$X^3 + Y^3 + dZ^3 = 0$$

with identity element (X : Y : Z) = (1 : -1 : 0).

- (i) Describe the group law on E_d in terms of the chord and tangent process.
- (ii) Find all the points of inflection on E_d defined over $\overline{\mathbb{Q}}$. What does this tell you about the torsion subgroup of $E_d(\mathbb{Q})$?
- (iii) Show that E_d has Weierstrass equation $y^2 = x^3 432 d^2$.
- (iv) Show that there are infinitely many pairs of rational numbers x and y with $x^3 + y^3 = 7$.
- 2 (i) Let $f(t) \in R[[T]]$ be a power series with f(0) = 0 and f'(0) a unit in the ring R. Show that there is a power series $g(t) \in R[[T]]$ with f(g(T)) = g(f(T)) = T.
 - (ii) Outline how the result in (i) is used in the proof of the weak Mordell-Weil theorem.

3 Either

(a) Write an essay on isogenies. You should include a proof that the degree map on $Hom(E_1, E_2)$ is a positive definite quadratic form,

or

(b) Write an essay on heights and their application to the proof of the Mordell-Weil theorem.

For either essay, you may find the following formulae useful :

Let $P_i = (x_i, y_i)$ for i = 1, 2, 3, 4 be non-zero points on the elliptic curve $y^2 = x^3 + ax + b$ with $P_3 = P_1 + P_2$ and $P_4 = P_1 - P_2$. Then

$$x_3 + x_4 = \frac{2(x_1x_2 + a)(x_1 + x_2) + 4b}{(x_1 - x_2)^2} ,$$

$$x_3 x_4 = \frac{x_1^2 x_2^2 - 2a x_1 x_2 - 4b (x_1 + x_2) + a^2}{(x_1 - x_2)^2} \, .$$

4 Describe a procedure, that often works in practice, to compute the rank of an elliptic curve over \mathbb{Q} with a rational 2-torsion point. Show that if p is an odd prime then the elliptic curve $y^2 = x^3 - p^2 x$ has rank at most 2. Give an example of a prime p for which the rank is exactly 1.

END OF PAPER