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PART ONE

1 What is an ultralimit? Prove that if A and B are elementarily equivalent, then
they have isomorphic ultralimits. You may assume Loś’s theorem.

2

(i) Show that there is no order-preserving embedding from chains-in-P to P , where P
is a poset.

(ii) Show that the relation P(x∩y) ⊆ y is wellfounded. (You may not use foundation.)

3 Let κ be supercompact: show that Σ2 sentences generalise downward to Vκ.

4 State and prove the Gale–Stewart theorem, and the strengthened version for games
where the payoff set is a countable intersection of open sets.

5 State and prove Loś’s theorem. Use it to give an ultraproduct proof that if T is a
theory all of whose finite fragments have models then T has a model.

6 State and prove the Ehrenfeucht–Mostowski theorem. You may assume Loś’s
theorem or Ramsey’s theorem.
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PART TWO

7 What is a measurable cardinal? An elementary embedding? Can there be an
elementary embedding from the universe into itself?

8 Prove the independence of the axiom of foundation, and extend your technique to
prove the independence of the axiom of choice from ZF minus foundation.

9 State and prove Kruskal’s theorem on wellquasiorders of trees, and deduce Fried-
man’s Finite Form from it.

10 Let A be an arbitrary set; give it the discrete topology, and Aω the product topology.
Show that games played over A whose payoff is Borel have winning strategies.
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Paper 26


	Rubric
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

