MATHEMATICAL TRIPOS Part III

Wednesday 6 June 2007 9.00 to 11.00

PAPER 24

THREE-MANIFOLDS

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 (a) Given two non-zero coprime integers p and q, define the lens space $\mathcal{L}(p,q)$. Write down its fundamental group, giving a brief justification for your answer.

(b) Explain how to associate a 3-manifold M_A to a matrix

$$A = \begin{pmatrix} -q & s \\ p & r \end{pmatrix}$$

in $SL(2,\mathbb{Z})$. Prove carefully that $M_A \cong \mathcal{L}(p,q)$ whenever p and q are non-zero coprime integers.

(c) Prove that the lens spaces $\mathcal{L}(7,2)$ and $\mathcal{L}(7,3)$ are homeomorphic.

2 (a) Define what it means for a closed connected orientable 3–manifold M to be (i) irreducible; (ii) prime; (iii) geometrizable; and (iv) of Heegaard genus g.

(b) Prove that $S^1 \times S^2$ is prime but not irreducible, and that it is the only closed connected orientable 3–manifold with this property.

(c) Let H_1 and H_2 be two handlebodies each of genus two. Suppose that α and β are two simple closed curves on ∂H_1 each of which bounds an embedded disc in H_1 , such that cutting H_1 along these discs produces a 3-ball. Similarly, let γ and δ be two simple closed curves on ∂H_2 each of which bounds an embedded disc in H_2 , such that cutting H_2 along these discs produces a 3-ball. Suppose that ϕ is a homeomorphism from ∂H_1 to ∂H_2 such that $\phi(\alpha) = \gamma$ and $\phi(\beta)$ is disjoint from γ and intersects δ once. Consider an orientable manifold M of Heegaard genus two which is obtained by gluing H_1 to H_2 via this homeomorphism ϕ . Prove that such a manifold M is geometrizable.

You should quote carefully any results that you use.

3 (a) Define carefully what is meant by (i) two embeddings of S^1 in S^3 being ambient isotopic; (ii) a link diagram of a link of a finite disjoint union of copies of S^1 in S^3 .

(b) Define the Kauffman bracket $\langle D \rangle$ of a link diagram D. Giving D an orientation, define the Jones polynomial of D and prove carefully that it is an invariant of the oriented link represented by D.

(c) Let K denote the four-crossing figure-eight knot embedded in S^3 . Prove that its Jones polynomial in $\mathbb{Z}[t^{1/2}, t^{-1/2}]$ is symmetric under the map $t \mapsto t^{-1}$.

(d) Calculate the fundamental group of the figure-eight knot complement $S^3 - K$, simplifying this to a one-relator presentation.

4 (a) Let S be a closed orientable surface of genus $g \ge 1$ and let h be an orientationpreserving homeomorphism of S to itself. Define what it means for h to be a Dehn twist.

(b) State precisely the Dehn–Lickorish theorem concerning homeomorphisms of a compact orientable surface S. Use this theorem to prove the Fundamental Theorem of Dehn Surgery.

(c) Let L be the link in S^3 consisting of two linked but unknotted circles and suppose that N_L is a small regular neighbourhood of L consisting of two disjoint solid tori U_1 and U_2 . For each $i \in \{1, 2\}$ let α_i be a non-trivial simple closed curve on ∂U_i such that α_i bounds an embedded disc in $S^3 - U_i$. Explain why each α_i is unique up to isotopy.

(d) Let M be the manifold obtained from $S^3 - N_L$ by attaching solid tori V_1 and V_2 to ∂N_L such that the meridian of V_i is identified with α_i , for i = 1 and i = 2. What is M? Justify your answer.

5 (a) Let Γ be a finitely generated group. Define what it means for Γ to be a Kleinian group.

(b) For a finitely generated Kleinian group Γ , define the limit set $\Lambda(\Gamma)$ of Γ and prove that this definition is independent of any arbitrary choices you may have made.

(c) We say that a Kleinian group is non-elementary if $\Lambda(\Gamma)$ contains at least three points. Let Γ be a non-elementary Kleinian group and write S^2_{∞} for the boundary sphere at infinity of \mathbb{H}^3 . Prove that every non-empty closed subset of S^2_{∞} invariant under the action of Γ contains $\Lambda(\Gamma)$.

(d) Deduce that any infinite proper normal subgroup Γ' of Γ satisfies $\Lambda(\Gamma') = \Lambda(\Gamma)$.

(e) Give an example of a finitely generated non-elementary Kleinian group Γ for which \mathbb{H}^3/Γ is **not** a hyperbolic 3–manifold, briefly justifying your answer.

END OF PAPER