MATHEMATICAL TRIPOS Part III

Monday 11 June 2007 9.00 to 12.00

PAPER 22

COMPLEX MANIFOLDS

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** Define an almost complex structure J on a real manifold M. Explain briefly how J induces the type decomposition of the complexified tangent bundle $TM \otimes \mathbb{C}$ and define the differential (p,q)-forms on M.

Show that the following conditions (a) and (b) are equivalent:

(a) for every two vector fields X, Y of type (1, 0) on M, the vector field [X, Y] also has type (1, 0);

(b) if α is a (1,0)-form on M then $d\alpha$ is the sum of a (2,0)-form and a (1,1)-form.

An almost complex structure J is said to be *integrable* if the condition (a) or (b) holds.

[Basic properties of real differential forms and real vector fields may be used without proof if accurately stated.]

Now suppose that M is a 2n-dimensional real manifold endowed with a complex n-form Ω , such that $\Omega \wedge \overline{\Omega}$ is nowhere-zero, where $\overline{\Omega}$ denotes the complex conjugate of Ω . Suppose also that each point $x \in M$ has a neighbourhood U_x such that $\Omega|_{U_x} = \theta_1 \wedge \ldots \wedge \theta_n$, for some complex 1-forms θ_k on U_x . Show that there is a uniquely determined almost complex structure J_{Ω} on M, so that any θ_k as above is a (1,0)-form. By considering the expressions $d\theta_k \wedge \Omega$, or otherwise, show that if $d\Omega = 0$ then J_{Ω} is integrable.

2 Define the differential operators ∂ and $\overline{\partial}$ for the differential (p, q)-forms on a complex manifold X. Explain what is meant by holomorphic *p*-forms.

Give definitions of a holomorphic vector bundle, transition functions, and holomorphic sections. Show that the bundle of (1,0)-forms on a complex manifold is a holomorphic bundle and identify, giving justification, the space of all the holomorphic sections of this bundle.

Define the tautological line bundle $\mathcal{O}(-1)$ over $\mathbb{C}P^n$ and show that it is a holomorphic bundle. Show that $\mathcal{O}(-1)$ has no non-zero holomorphic sections over $\mathbb{C}P^n$.

[You may use without proof auxiliary results on vector bundles over smooth manifolds provided that you state these correctly.]

3 Define the terms *irreducible subvariety of codimension* k in a compact complex manifold X and *divisors* on X.

Explain what is meant by a local defining function of a divisor D on X and by the associated holomorphic line bundle [D], showing that [D] is well-defined. You should state clearly the auxiliary properties of local rings of holomorphic functions that you require. Prove the isomorphism of line bundles $[D_1+D_2] \cong [D_1] \otimes [D_2]$, for any two divisors D_1, D_2 on X.

Let Y be a non-singular hypersurface in a complex manifold X. Prove that the restriction of the line bundle [-Y] to Y is isomorphic to the conormal bundle of Y.

[You may assume that transition functions determine a vector bundle up to an isomorphism.]

4 Define the blow-up \tilde{X} of a complex manifold X at a point $p \in X$ and the exceptional divisor E on \tilde{X} . Construct a family of coordinate charts on \tilde{X} near points of E, in the case when X is a polydisc in \mathbb{C}^n .

State and prove the relation between the canonical bundles of X and \hat{X} , assuming that K_X has a meromorphic section which is not identically zero.

[Standard results on the line bundles associated to divisors may be assumed if accurately stated.]

Given a point $x \in \mathbb{C}P^2$, show that the assignment to each $y \neq x$ of the complex projective line passing through x and y induces a holomorphic map $f : \mathbb{C}P^2 \setminus \{x\} \to \mathbb{C}P^1$. Show further that there is a holomorphic map $\tilde{f} : S \to \mathbb{C}P^1$ such that $f \circ \sigma(z) = \tilde{f}(z)$ whenever $\sigma(z) \neq x$, where $\sigma : S \to \mathbb{C}P^2$ is the blow-up of $\mathbb{C}P^2$ at x.

5 Let X be a compact Hermitian manifold. Define the associated (1, 1)-form ω of the Hermitian metric on X and write down the volume form of the induced Riemannian metric. Define the Hodge star operator for the differential (p, q)-forms on X and compute $*\omega$. Define the Laplacians Δ_d and $\Delta_{\bar{\partial}}$ on X and state the Hodge theorem for $\Delta_{\bar{\partial}}$.

Show that the (point-wise) adjoint Λ of the Lefschetz operator $L(\alpha) = \omega \wedge \alpha$ on the differential forms on X satisfies $\Lambda \beta = (-1)^{p+q} * L * \beta$, for each (p,q)-form β .

[You may assume that $**\alpha = (-1)^{p+q}\alpha$, for each (p,q)-form α .]

Now suppose that the Hermitian metric on X is Kähler. Assuming the identity $[\Lambda, \partial] = i\bar{\partial}^*$, deduce the relation $\Delta_d = 2\Delta_{\bar{\partial}}$. Show that the Betti numbers $b^{2k-1}(X)$ are even and $b^{2k}(X) > 0$, for $k = 1, \ldots, \dim X$. Give an example, with a brief justification, of a compact complex manifold which does not admit any Kähler metrics.

[You may assume that the space of d-harmonic r-forms on a compact oriented Riemannian manifold is isomorphic to the r-th de Rham cohomology.]

END OF PAPER