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1 Define an almost complex structure J on a real manifold M . Explain briefly how
J induces the type decomposition of the complexified tangent bundle TM ⊗C and define
the differential (p, q)-forms on M .

Show that the following conditions (a) and (b) are equivalent:

(a) for every two vector fields X, Y of type (1, 0) on M , the vector field [X, Y ] also has
type (1, 0);

(b) if α is a (1, 0)-form on M then dα is the sum of a (2, 0)-form and a (1, 1)-form.

An almost complex structure J is said to be integrable if the condition (a) or (b) holds.

[Basic properties of real differential forms and real vector fields may be used without proof
if accurately stated.]

Now suppose that M is a 2n-dimensional real manifold endowed with a complex
n-form Ω, such that Ω∧Ω is nowhere-zero, where Ω denotes the complex conjugate of Ω .
Suppose also that each point x ∈ M has a neighbourhood Ux such that Ω|Ux = θ1∧. . .∧θn,
for some complex 1-forms θk on Ux. Show that there is a uniquely determined almost
complex structure JΩ on M , so that any θk as above is a (1, 0)-form. By considering the
expressions dθk ∧ Ω, or otherwise, show that if dΩ = 0 then JΩ is integrable.

2 Define the differential operators ∂ and ∂̄ for the differential (p, q)-forms on a complex
manifold X. Explain what is meant by holomorphic p-forms.

Give definitions of a holomorphic vector bundle, transition functions, and holomor-
phic sections. Show that the bundle of (1, 0)-forms on a complex manifold is a holomorphic
bundle and identify, giving justification, the space of all the holomorphic sections of this
bundle.

Define the tautological line bundle O(−1) over CPn and show that it is a holomor-
phic bundle. Show that O(−1) has no non-zero holomorphic sections over CPn.

[You may use without proof auxiliary results on vector bundles over smooth manifolds
provided that you state these correctly.]
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3 Define the terms irreducible subvariety of codimension k in a compact complex
manifold X and divisors on X.

Explain what is meant by a local defining function of a divisor D on X and by the
associated holomorphic line bundle [D], showing that [D] is well-defined. You should state
clearly the auxiliary properties of local rings of holomorphic functions that you require.
Prove the isomorphism of line bundles [D1+D2] ∼= [D1]⊗ [D2], for any two divisors D1, D2

on X.

Let Y be a non-singular hypersurface in a complex manifold X. Prove that the
restriction of the line bundle [−Y ] to Y is isomorphic to the conormal bundle of Y .

[You may assume that transition functions determine a vector bundle up to an isomor-
phism.]

4 Define the blow-up X̃ of a complex manifold X at a point p ∈ X and the exceptional
divisor E on X̃. Construct a family of coordinate charts on X̃ near points of E, in the
case when X is a polydisc in Cn.

State and prove the relation between the canonical bundles of X and X̃, assuming
that KX has a meromorphic section which is not identically zero.

[Standard results on the line bundles associated to divisors may be assumed if accurately
stated.]

Given a point x ∈ CP 2, show that the assignment to each y 6= x of the complex
projective line passing through x and y induces a holomorphic map f : CP 2 \{x} → CP 1.
Show further that there is a holomorphic map f̃ : S → CP 1 such that f ◦ σ(z) = f̃(z)
whenever σ(z) 6= x, where σ : S → CP 2 is the blow-up of CP 2 at x.

5 Let X be a compact Hermitian manifold. Define the associated (1, 1)-form ω of
the Hermitian metric on X and write down the volume form of the induced Riemannian
metric. Define the Hodge star operator for the differential (p, q)-forms on X and compute
∗ω. Define the Laplacians ∆d and ∆∂̄ on X and state the Hodge theorem for ∆∂̄ .

Show that the (point-wise) adjoint Λ of the Lefschetz operator L(α) = ω ∧ α on
the differential forms on X satisfies Λβ = (−1)p+q ∗ L ∗ β, for each (p, q)-form β.

[You may assume that ∗∗α = (−1)p+qα, for each (p, q)-form α.]

Now suppose that the Hermitian metric on X is Kähler. Assuming the identity
[Λ, ∂] = i∂̄∗, deduce the relation ∆d = 2∆∂̄ . Show that the Betti numbers b2k−1(X) are
even and b2k(X) > 0, for k = 1, . . . ,dim X. Give an example, with a brief justification, of
a compact complex manifold which does not admit any Kähler metrics.

[You may assume that the space of d-harmonic r-forms on a compact oriented Riemannian
manifold is isomorphic to the r-th de Rham cohomology.]
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