MATHEMATICAL TRIPOS Part III

Thursday 31 May 2007 1.30 to 4.30

PAPER 17

TORIC GEOMETRY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 Let σ be a rational polyhedral cone (with a vertex) in $N_{\mathbf{R}} = N \otimes \mathbf{R}$, where N denotes a lattice in \mathbf{R}^n , and let $\check{\sigma}$ be the dual cone in $M_{\mathbf{R}}$, where M denotes the dual lattice. Show that the affine toric variety $X_{\check{\sigma}}$, defined over some algebraically closed field k, contains an *n*-dimensional algebraic torus $X_M \cong (k^*)^n$, whose natural action on itself extends to an action on $X_{\check{\sigma}}$. Prove that

$$X_{\check{\sigma}} \setminus X_M = \bigcup \{ X_{\nu} : \nu \text{ a proper face of } \check{\sigma} \}.$$

If $\mu \in M \cap \check{\sigma}$, show that the subvariety of $X_{\check{\sigma}}$ defined by the vanishing of the monomial \mathbf{x}^{μ} may be identified as

$$\bigcup \{X_{\nu} : \nu \text{ a face of } \check{\sigma}, \ \mu \notin \nu \}.$$

Describe, with proof, the order reversing bijection between the faces of σ and the faces of $\check{\sigma}$. If τ is a face of σ , show that $X_{\tau^{\perp}} \subset X_{\check{\sigma}}$ is an orbit under the torus action, and that the closure F_{τ} of $X_{\tau^{\perp}}$ in $X_{\check{\sigma}}$ is the affine toric variety $X_{\check{\sigma}\cap\tau^{\perp}}$. For τ a face of σ , find an expression for $X_{\check{\sigma}} \setminus X_{\check{\tau}}$ in terms of a union of closed sets F_{γ} , as γ ranges over certain faces on σ .

2 For Δ an integral polytope in $M_{\mathbf{R}} \cong \mathbf{R}^n$ (not necessarily containing the origin), describe the construction of the complete toric variety \mathbf{P}_{Δ} . Given positive (coprime) integers q_1, \ldots, q_n , let $\Delta \subset \mathbf{R}^n$ be the simplex with vertices at the origin and a_1e_1, \ldots, a_ne_n , where e_1, \ldots, e_n is the standard basis for the lattice $M = \mathbf{Z}^n$, and $a_i = \prod_{j \neq i} q_j$ for $1 \leq i \leq n$. Find an explicit description for \mathbf{P}_{Δ} as a toric variety $X_{\Sigma,N'}$, where Σ is the standard fan defining projective *n*-space and $N' \supset \mathbf{Z}^n$ is an appropriate rank *n* lattice.

Given a general complete toric variety X_{Σ} , describe the construction of the *toric* homogeneous coordinate ring S, graded by elements of the class group $\operatorname{Cl}(X_{\Sigma})$. For the example described above, show that as graded rings, S is isomorphic to the graded subring $k[Y_0, Y_1^{q_1}, \ldots, Y_n^{q_n}]$ of $k[Y_0, Y_1, \ldots, Y_n]$, equipped with the usual grading. Assuming that the field k has characteristic zero, explain *briefly* why, in this case, the toric variety $X_{\Sigma,N'} = \mathbf{P}_{\Delta}$ is the quotient of $\mathbf{A}^{n+1} \setminus \{0\}$ by an action of k^* , given by

$$(\lambda, (y_0, y_1, \dots, y_n)) \mapsto (\lambda y_0, \lambda^{q_1} y_1, \dots, \lambda^{q_n} y_n).$$

3 Let X_{Σ} be a smooth toric surface, and let $F \cong \mathbf{P}^1$ correspond to some ray in $\Sigma^{(1)}$. Show that F is the exceptional curve resulting from the toric blow-up of a smooth toric surface (i.e. F may be torically blown down to a smooth point) if and only if $F^2 = -1$.

Show that any affine toric surface $X_{\check{\sigma}}$, defined over an algebraically closed field of characteristic zero, is a quotient $\mathbf{A}^2/\langle \zeta \rangle$, where ζ is a primitive *r*th root of unity for some r > 1, and where the action of ζ is given by

$$(x,y) \mapsto (\zeta x, \zeta^q y),$$

for some 0 < q < r with (q, r) = 1. Describe (with proof) the algorithm for finding a minimal desingularization of $X_{\check{\sigma}}$ by means of continued fractions. Show that the exceptional curves F in this desingularization have $F^2 \leq -2$, and that they all have $F^2 = -2$ if and only if q = r - 1.

Consider now the fan Σ in \mathbf{R}^2 given by cones

$$\sigma_1 = \mathbf{R}_+(0,1) + \mathbf{R}_+(r,1)$$
 and $\sigma_2 = \mathbf{R}_+(r,1) + \mathbf{R}_+(1,0).$

Let Σ' denote the fan obtained from Σ by taking the minimal desingularization of $X_{\check{\sigma}_1}$ as above. Show that the composite morphism $X_{\Sigma'} \to X_{\Sigma} \to \mathbf{A}^2$ may be factored into the composite of r toric morphisms, each of which blows down a curve to a smooth point.

4 Let $\Sigma \subset N_{\mathbf{R}}$ (where N denotes a lattice in \mathbf{R}^n) be a fan which is complete and basic, with X_{Σ} denoting the corresponding smooth toric variety. Suppose that $\Sigma^{(1)} = {\mathbf{R}_{+}e_1, \ldots, \mathbf{R}_{+}e_d}$, for primitive vectors e_j in N, and let F_1, \ldots, F_d denote the corresponding prime divisors on X_{Σ} . Show that any divisor D on X_{Σ} is linearly equivalent to one of the form $\sum_{i=1}^{d} a_i F_i$.

For $D = \sum_{i=1}^{d} a_i F_i$, identify the associated vector space $\mathcal{L}(D)$. Prove that the complete linear system |D| is without fixed points if and only if the following condition holds:

For all $\sigma \in \Sigma^{(n)}$, there exists $m(\sigma)$ in the dual lattice M such that $\langle m(\sigma), e_j \rangle \geq -a_j$ for all j, with equality if $e_j \in \sigma$.

State (without proof) an analogous criterion for D to be ample.

Suppose we are given $D = \sum_{i=1}^{d} a_i F_i$ as above, which is *ample* on X_{Σ} . Suppose that $\sigma = \mathbf{R}_+ e_1 + \ldots + \mathbf{R}_+ e_n$ is a cone in $\Sigma^{(n)}$, and set $\tilde{e} = \sum_{i=1}^{n} e_i$ (a primitive vector in N). We make the barycentric subdivision Σ' of Σ at \tilde{e} , in which σ is replaced by *n*-dimensional cones $\sigma_1, \ldots, \sigma_n$, each σ_i containing \tilde{e} and a codimension one face of σ . Let \tilde{F} denote the prime divisor on $X_{\Sigma'}$ corresponding to \tilde{e} , and F'_1, \ldots, F'_d denote those corresponding (respectively) to e_1, \ldots, e_d . If $a = \sum_{i=1}^{n} a_i$, and we set

$$D' = \sum_{i=1}^d a_i F'_i + a\tilde{F},$$

show that $cD' - \tilde{F}$ is ample for all sufficiently large integers c.

END OF PAPER

Paper 17