MATHEMATICAL TRIPOS Part III

Wednesday 6 June 2007 9.00 to 11.00

PAPER 13

COMBINATORIAL PROBABILITY

Attempt THREE questions,

At most **ONE** from any one of the **THREE** parts. There are **SIX** questions in total. The questions carry equal weight. The results you quote should always be stated precisely.

STATIONERY REQUIREMENTS

ENTS SPECIAL REQUIREMENTS None

Cover sheet Treasury Tag Script paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

FIRST PART

1 (i) Given $\Delta \geq 1$, write $\gamma(\Delta)$ for the maximal number c such that if $\mathcal{A} = \{A_1, \ldots, A_m\}$ is a family of events with a strong independence graph of maximal degree Δ , and $\mathbb{P}(A_i) < c$ for every i, then $\mathbb{P}(\bigcap_{i=1}^m \overline{A}_i) > 0$. Prove that $\gamma(1) = 1/2$ and

$$\gamma(\Delta) \le (\Delta - 1)^{\Delta - 1} / \Delta^{\Delta}$$

for $\Delta \geq 2$.

(ii) Let $\mathcal{A} = \{A_1, A_2, A_3\}$ be a family of events with $0 < \mathbb{P}(A_i) = a < 1$ for every *i*. Suppose that the oriented triangle is an independence digraph of \mathcal{A} . For what values of *a* can you guarantee that we have $\mathbb{P}(\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3) > 0$? And what is the answer if instead the (unoriented) triangle is an independence graph of \mathcal{A} ?

2 Let $H = (V, \mathcal{E})$ be a k-uniform hypergraph (i.e., $\mathcal{E} \subset V^{(k)}$) such that every edge $E \in \mathcal{E}$ meets at most m other edges. A 3-colouring of H is a partition of the vertex set V into three sets, V_1, V_2, V_3 , such that every edge meets each V_i . Define a correlation graph of a suitable family of events, and use it to prove that if $e(2m + 2) \leq 3^k$ then H has a 3-colouring.

SECOND PART

3 Let $f: Q_n \to \{0, 1\}$ be a Boolean function with $\mathbb{P}(f = 1) = t$, and let β_i be the influence of the *i*th variable on f.

(i) Suppose that $\beta_i \leq \beta$ for every *i*. Show that if $\beta > 0$ is small enough and *n* is large enough then

$$\sum_{i=1}^{n} \beta_i \ge \frac{2}{3} t(1-t) \log(1/\beta).$$
(1)

(ii) Deduce that if n is large enough then

$$\max_i \beta_i \geq \frac{1}{2}t(1-t)(\log n)/n.$$

Hint for Part (i). Suppose, for a contradiction, that inequality (1) is false. Set $b = \frac{1}{3} \log(1/\beta)$. Show that the Fourier coefficients α_A of f satisfy

$$\sum_{1 \le |A| \le b} \alpha_A^2 \ge \frac{1}{2} t(1-t).$$

Deduce that for $\delta = 1/e$ we have

$$\sum_{i=1}^{n} \beta_i^{2/(1+\delta)} \ge 2 \, b \, \delta^b \, t(1-t).$$

4 (i) Prove the Friedgut–Kalai theorem about sharp thresholds.

(You may assume a result about the influence of a variable in a weighted cube, provided it is stated precisely.)

(ii) Use the 'tribes' example to show that, apart frmo the constant, the Friedgut–Kalai theorem is best possible.

THIRD PART

5 (i) Consider (independent) bond percolation on \mathbb{Z}^2 with bond probability 1/2. Write h(m,n) for the probability that an m by n rectangle contains an open crossing from left to right. Sketch a proof of the assertion that h(n+1,n) = 1/2 for every n.

(ii) Prove that $h(3n, 2n) \ge 2^{-7}$, and deduce that for every $\lambda > 0$ there is a constant $c_{\lambda} > 0$ such that $h(m, n) \ge c_{\lambda}$ whenever $m \le \lambda n$.

(iii) Deduce Harris's theorem.

6 (i) State Harris's lemma, and deduce the *n*th root trick.

(ii) Consider (independent) bond percolation on \mathbb{Z}^2 with bond probability p. Write $h_p(m,n)$ for the probability that an m by n rectangle contains an open crossing from left to right. Assuming that $h_{1/2}(4n,n) > c_4$ for some constant $c_4 > 0$ and every n, use the 5n by 5n torus \mathbb{T}_{5n} to prove that, given p, λ and ε with $1/2 , <math>\lambda > 0$, and $\varepsilon > 0$, we have $h_p(m,n) > 1 - \varepsilon$, provided n is large enough and $m \leq \lambda n$.

(iii) Show that there is a $p_0 < 1$ such that if $\widetilde{\mathbb{P}}$ is a 1-independent probability measure on $E(\mathbb{Z}^2)$ in which every bond is open with probability at least p_0 then $\widetilde{\mathbb{P}}(|C_0| = \infty) > 0$.

(iv) Prove Kesten's theorem.

END OF PAPER