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FIRST PART

1 (i) Given ∆ ≥ 1, write γ(∆) for the maximal number c such that if A =
{A1, . . . , Am} is a family of events with a strong independence graph of maximal degree
∆, and P(Ai) < c for every i, then P(

⋂m
i=1 Ai) > 0. Prove that γ(1) = 1/2 and

γ(∆) ≤ (∆− 1)∆−1/∆∆

for ∆ ≥ 2.

(ii) Let A = {A1, A2, A3} be a family of events with 0 < P(Ai) = a < 1 for every i.
Suppose that the oriented triangle is an independence digraph of A. For what values of a
can you guarantee that we have P(A1 ∩A2 ∩A3) > 0? And what is the answer if instead
the (unoriented) triangle is an independence graph of A?

2 Let H = (V, E) be a k-uniform hypergraph (i.e., E ⊂ V (k)) such that every edge
E ∈ E meets at most m other edges. A 3-colouring of H is a partition of the vertex set V
into three sets, V1, V2, V3, such that every edge meets each Vi. Define a correlation graph
of a suitable family of events, and use it to prove that if e(2m + 2) ≤ 3k then H has a
3-colouring.
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SECOND PART

3 Let f : Qn → {0, 1} be a Boolean function with P(f = 1) = t, and let βi be the
influence of the ith variable on f .

(i) Suppose that βi ≤ β for every i. Show that if β > 0 is small enough and n is
large enough then

n∑
i=1

βi ≥
2
3

t(1− t) log(1/β). (1)

(ii) Deduce that if n is large enough then

max
i

βi ≥
1
2
t(1− t)(log n)/n.

Hint for Part (i). Suppose, for a contradiction, that inequality (1) is false. Set
b = 1

3 log(1/β). Show that the Fourier coefficients αA of f satisfy

∑
1≤|A|≤b

α2
A ≥ 1

2
t(1− t).

Deduce that for δ = 1/e we have

n∑
i=1

β
2/(1+δ)
i ≥ 2 b δb t(1− t).

4 (i) Prove the Friedgut–Kalai theorem about sharp thresholds.

(You may assume a result about the influence of a variable in a weighted cube, provided
it is stated precisely.)

(ii) Use the ‘tribes’ example to show that, apart frmo the constant, the Friedgut–
Kalai theorem is best possible.
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THIRD PART

5 (i) Consider (independent) bond percolation on Z2 with bond probability 1/2.
Write h(m,n) for the probability that an m by n rectangle contains an open crossing
from left to right. Sketch a proof of the assertion that h(n + 1, n) = 1/2 for every n.

(ii) Prove that h(3n, 2n) ≥ 2−7, and deduce that for every λ > 0 there is a constant
cλ > 0 such that h(m,n) ≥ cλ whenever m ≤ λn.

(iii) Deduce Harris’s theorem.

6 (i) State Harris’s lemma, and deduce the nth root trick.

(ii) Consider (independent) bond percolation on Z2 with bond probability p. Write
hp(m,n) for the probability that an m by n rectangle contains an open crossing from left
to right. Assuming that h1/2(4n, n) > c4 for some constant c4 > 0 and every n, use the
5n by 5n torus T5n to prove that, given p, λ and ε with 1/2 < p < 1, λ > 0, and ε > 0,
we have hp(m,n) > 1− ε, provided n is large enough and m ≤ λn.

(iii) Show that there is a p0 < 1 such that if P̃ is a 1-independent probability measure
on E(Z2) in which every bond is open with probability at least p0 then P̃(|C0| = ∞) > 0.

(iv) Prove Kesten’s theorem.

END OF PAPER
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