MATHEMATICAL TRIPOS Part III

Thursday 31 May 2007 1.30 to 4.30

PAPER 10

ANALYSIS OF OPERATORS

Attempt **THREE** questions. There are **EIGHT** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 (a) Let V be a finite-dimensional complex inner product space and let $W = \Lambda(V)$. For $v \in V$ define the exterior multiplication operator e(v) on W. Prove that $e(a)e(b)^* + e(b)^*e(a) = (a,b)1$ for $a, b \in V$. Show that the operators $e(a), e(b)^*$ $(a, b \in V)$ act irreducibly on W.

(b) Let V be a finite-dimensional complex inner product space and $A \subseteq \text{End}(V)$ a unital *-algebra. Define the commutant A' of A and prove that A'' = A.

(c) Explain what it means for a strong operator continuous homomorphism $z \mapsto U_z$, $\mathbb{T} \to U(H)$ to have *positive energy*. If in addition $S \subset B(H)$ satisfies $S^* = S$, $S = U_z S U_z^*$ for all $z \in \mathbb{T}$, and H is irreducible for $S \cup \{U_z\}$, prove that any operator that commutes with S necessarily commutes with any operator U_z .

2 (a) Let A be the Banach algebra $H_s(S^1)$ for s > 1/2 and let A_+ and A_- be the closed subalgebras given by the vanishing of negative and positive Fourier coefficients. Prove that if $X \in GL_n(A)$ and ||X - I|| < 1, then there are unique $X_{\pm} \in GL_n(A_{\pm})$ such that $X = X_-X_+$ and $X_+(0) = I$.

(b) Let $\mathcal{G}(H)$ be the group of invertible operators on the Hilbert space H of the form I + T with T trace-class. Given a differentiable map $F : (a, b) \to \mathcal{G}(H)$, prove that $f(t) = \det F(t)$ is differentiable with

$$f^{-1}\dot{f} = \operatorname{Tr}(F^{-1}\dot{F}).$$

(c) If $A, B \in B(H)$ with [A, B] trace-class, prove that $e^A e^B e^{-A} e^{-B}$ lies in $\mathcal{G}(H)$ with $\det(e^A e^B e^{-A} e^{-B}) = \exp \operatorname{Tr}(AB - BA)$

$$\det(e \ e \ e \ e \) = \exp \Pi \left(AD - DA\right)$$

(d) Prove that if $f \in C^{\infty}(S^1)$ with $f(z) = \sum a_n z^n$, then

$$\det T(e^f)T(e^{-f}) = \exp\sum_{n>0} na_n a_{-n},$$

where T(g) is the Toeplitz operator with symbol g.

3 (a) On $L^2(\mathbb{R})$ write down a family of unitary operators W(x, y) $(x, y \in \mathbb{R})$ satisfying

$$W(x_1, y_1)W(x_2, y_2) = e^{i(x_1y_2 - y_1x_2)}W(x_1 + x_2, y_1 + y_2).$$

Prove that an operator commuting with all the W(x, y)'s is necessarily a scalar operator.

(b) Prove that any strong operator continuous unitary map $(x, y) \mapsto W(x, y)$, satisfying these relations and acting irreducibly, is unitarily equivalent to the map given in (a).

(c) Show that if $a, b, c, d \in \mathbb{R}$ satisfy ad-bc = 1, then there is a unitary V on $L^2(\mathbb{R})$, unique up to a phase, such that $VW(x, y)V^* = W(ax+by, cx+dy)$ for all $x, y \in \mathbb{R}$. When a = d = 0, b = 1 and c = -1, find a corresponding operator V.

4 (a) State and prove the Jacobi triple product formula.

(b) Prove that every strong operator continuous homomorphism of \mathbb{T} into the projective unitary group PU(H) lifts to a continuous homomorphism into U(H).

(c) Prove that every strong operator continuous homomorphism of \mathbb{R} into PU(H) lifts to a continuous homomorphism into U(H) (you may assume that any unitary U can be written e^{iA} for A self-adjoint in U'').

5 Write an essay on the index of Fredholm operators. You should include in your account a discussion of Toeplitz operators on the circle.

6 Write an essay on Sobolev spaces and eigenfunction expansions for second order elliptic operators on \mathbb{T}^n .

7 Write an essay on the Fourier transform on \mathbb{R}^n . Your essay should include a discussion of creation and annhihilation operators and a proof that the Fourier transform induces a bijection on $\mathcal{S}(\mathbb{R}^n)$. (You may assume the Stone–Weierstrass theorem if needed.)

8 Write an essay on positive energy representations of the loop group of U(1) and the fermion-boson correspondence. Your account should contain a discussion of Segal's quantisation criterion and the 2-cocycle on the loop group.

END OF PAPER