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1 (a) Let V be a finite–dimensional complex inner product space and let W =
Λ(V ). For v ∈ V define the exterior multiplication operator e(v) on W . Prove that
e(a)e(b)∗ + e(b)∗e(a) = (a, b)1 for a, b ∈ V . Show that the operators e(a), e(b)∗ (a, b ∈ V )
act irreducibly on W .

(b) Let V be a finite–dimensional complex inner product space and A ⊆ End(V ) a
unital *–algebra. Define the commutant A′ of A and prove that A′′ = A.

(c) Explain what it means for a strong operator continuous homomorphism z 7→ Uz,
T → U(H) to have positive energy. If in addition S ⊂ B(H) satisfies S∗ = S, S = UzSU∗

z

for all z ∈ T, and H is irreducible for S ∪ {Uz}, prove that any operator that commutes
with S necessarily commutes with any operator Uz.

2 (a) Let A be the Banach algebra Hs(S1) for s > 1/2 and let A+ and A− be the
closed subalgebras given by the vanishing of negative and positive Fourier coefficients.
Prove that if X ∈ GLn(A) and ‖X − I‖ < 1, then there are unique X± ∈ GLn(A±) such
that X = X−X+ and X+(0) = I.

(b) Let G(H) be the group of invertible operators on the Hilbert space H of the
form I + T with T trace–class. Given a differentiable map F : (a, b) → G(H), prove that
f(t) = det F (t) is differentiable with

f−1ḟ = Tr(F−1Ḟ ).

(c) If A,B ∈ B(H) with [A,B] trace–class, prove that eAeBe−Ae−B lies in G(H)
with

det(eAeBe−Ae−B) = exp Tr (AB −BA).

(d) Prove that if f ∈ C∞(S1) with f(z) =
∑

anzn, then

det T (ef )T (e−f ) = exp
∑
n>0

nana−n,

where T (g) is the Toeplitz operator with symbol g.
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3 (a) On L2(R) write down a family of unitary operators W (x, y) (x, y ∈ R) satisfying

W (x1, y1)W (x2, y2) = ei(x1y2−y1x2)W (x1 + x2, y1 + y2).

Prove that an operator commuting with all the W (x, y)’s is necessarily a scalar operator.

(b) Prove that any strong operator continuous unitary map (x, y) 7→ W (x, y),
satisfying these relations and acting irreducibly, is unitarily equivalent to the map given
in (a).

(c) Show that if a, b, c, d ∈ R satisfy ad−bc = 1, then there is a unitary V on L2(R),
unique up to a phase, such that V W (x, y)V ∗ = W (ax+by, cx+dy) for all x, y ∈ R. When
a = d = 0, b = 1 and c = −1, find a corresponding operator V .

4 (a) State and prove the Jacobi triple product formula.

(b) Prove that every strong operator continuous homomorphism of T into the
projective unitary group PU(H) lifts to a continuous homomorphism into U(H).

(c) Prove that every strong operator continuous homomorphism of R into PU(H)
lifts to a continuous homomorphism into U(H) (you may assume that any unitary U can
be written eiA for A self–adjoint in U ′′).

5 Write an essay on the index of Fredholm operators. You should include in your
account a discussion of Toeplitz operators on the circle.

6 Write an essay on Sobolev spaces and eigenfunction expansions for second order
elliptic operators on Tn.

7 Write an essay on the Fourier transform on Rn. Your essay should include a
discussion of creation and annhihilation operators and a proof that the Fourier transform
induces a bijection on S(Rn). (You may assume the Stone–Weierstrass theorem if needed.)

8 Write an essay on positive energy representations of the loop group of U(1) and
the fermion–boson correspondence. Your account should contain a discussion of Segal’s
quantisation criterion and the 2–cocycle on the loop group.
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Paper 10


	Rubric
	1
	2
	3
	4
	5
	6
	7
	8

