

MATHEMATICAL TRIPOS Part III

Tuesday 13 June, 2006 9 to 12

PAPER 88

MODULAR FORMS

Attempt at most FOUR questions. There are FIVE questions in total. The questions carry equal weight.

We use the following notations thoughout: $\Lambda \subset \mathbb{C}$ is a lattice, τ belongs to the upper half-plane.

For any $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbb{Q})$ we write $f | [\alpha]_k(\tau) = \det(\alpha)^{k-1}(c\tau+d)^{-k}f(\alpha(\tau)).$

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Define the Weierstrass \wp -function and show that it has Laurent expansion

$$\wp(z) = \frac{1}{z^2} + \sum_{k=2}^{\infty} (2k-1)G_{2k}z^{2k-2}$$

where as usual

$$G_{2k} = \sum_{0 \neq \omega \in \Lambda} \frac{1}{\omega^{2k}}.$$

(You may assume the convergence of the relevant series.) Deduce that $\wp(z)$ satisfies the differential equation

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

where $g_2 = 60G_4$ and $g_3 = 140G_6$.

By considering the Laurent expansion of $\wp''(z)$ or otherwise, show that for k > 3, G_{2k} may be expressed as a polynomial in G_4 and G_6 with positive, rational coefficients.

2 (i) Let M, N be positive integers with M|N. Show that if D is a divisor of N/M then for any $f \in S_k(\Gamma_0(M))$ the function $f(D\tau)$ belongs to $S_k(\Gamma_0(N))$.

(ii) Let p be prime. Show that $\Delta(p\tau) \in S_{12}(\Gamma_0(p))$, and that the orders of $\Delta(\tau)$, $\Delta(p\tau)$ at the cusps of $\Gamma_0(p)$ are given by the table

	$\Delta(\tau)$	$\Delta(p\tau)$
$\mathrm{cusp} \ \infty$	1	p
cusp 0	p	1

(iii) Assuming that $S_2(\Gamma_0(11))$ has dimension 1, show that an element of this space is $(\Delta(\tau)\Delta(11\tau))^{1/12}$.

Paper 88

3

3 Let the operator W_N be defined on modular forms of weight k by

$$W_N f = i^k N^{1-k/2} f \left| \begin{bmatrix} 0 & -1 \\ N & 0 \end{bmatrix} \right|_k$$

Show that W_N maps $S_k(\Gamma_1(N))$ to itself, and that W_N^2 is the identity map.

Suppose that $f = \sum a_n q^n \in S_k(\Gamma_1(N))$ satisfies $W_N f = \epsilon f$ where $\epsilon \in \{\pm 1\}$. Show that the completed *L*-function

$$\Lambda_N(f,s) = N^{s/2} (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

has an analytic continuation to the complex plane, and satisfies the functional equation $\Lambda_N(f, k - s) = \epsilon \Lambda_N(f, s).$

4 Use the Poisson summation formula to show that the function $\vartheta(\tau) = \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau)$ satisfies the transformation rule $\vartheta(-1/\tau) = \sqrt{-i\tau} \, \vartheta(\tau)$.

Use the Mellin transform of $(\vartheta(it)-1)/2$ to obtain the functional equation for the Riemann $\zeta\text{-function}.$

5 For congruence subgroups Γ_1 , Γ_2 of $SL_2(\mathbb{Z})$, and $\alpha \in GL_2^+(\mathbb{Q})$ define the double coset operator $[\Gamma_1 \alpha \Gamma_2]$ on $M_k(\Gamma_1)$, and show that its image is contained in $M_k(\Gamma_2)$.

Define the operators $\langle d \rangle$ and T_p on $M_k(\Gamma_1(N))$, for d and p prime to N. Show that they commute, and that if $a_n(f)$ are the Fourier coefficients of $f \in M_k(\Gamma_1(N))$, then for every p not dividing N,

$$a_n(T_p f) = a_{np}(f) + p^{k-1}a_{n/p}(\langle p \rangle f).$$

END OF PAPER

Paper 88