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MODULAR FORMS

Attempt at most FOUR questions.

There are FIVE questions in total.

The questions carry equal weight.

We use the following notations thoughout: Λ ⊂ C is a lattice, τ belongs to the upper half-plane.

For any α =
(

a b
c d

)
∈ GL+

2 (Q) we write f
∣∣[α]k(τ) = det(α)k−1(cτ + d)−kf(α(τ)).
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1 Define the Weierstrass ℘-function and show that it has Laurent expansion

℘(z) =
1
z2

+
∞∑

k=2

(2k − 1)G2kz2k−2

where as usual
G2k =

∑
0 6=ω∈Λ

1
ω2k

.

(You may assume the convergence of the relevant series.) Deduce that ℘(z) satisfies the
differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

where g2 = 60G4 and g3 = 140G6.

By considering the Laurent expansion of ℘′′(z) or otherwise, show that for k > 3,
G2k may be expressed as a polynomial in G4 and G6 with positive, rational coefficients.

2 (i) Let M , N be positive integers with M |N . Show that if D is a divisor of N/M
then for any f ∈ Sk(Γ0(M)) the function f(Dτ) belongs to Sk(Γ0(N)).

(ii) Let p be prime. Show that ∆(pτ) ∈ S12(Γ0(p)), and that the orders of ∆(τ),
∆(pτ) at the cusps of Γ0(p) are given by the table

∆(τ) ∆(pτ)

cusp ∞ 1 p

cusp 0 p 1

(iii) Assuming that S2(Γ0(11)) has dimension 1, show that an element of this space
is (∆(τ)∆(11τ))1/12.
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3 Let the operator WN be defined on modular forms of weight k by

WNf = ikN1−k/2f
∣∣∣[ 0 −1

N 0

]
k

Show that WN maps Sk(Γ1(N)) to itself, and that W 2
N is the identity map.

Suppose that f =
∑

anqn ∈ Sk(Γ1(N)) satisfies WNf = εf where ε ∈ {±1}. Show
that the completed L-function

ΛN (f, s) = Ns/2(2π)−sΓ(s)
∞∑

n=1

an

ns

has an analytic continuation to the complex plane, and satisfies the functional equation
ΛN (f, k − s) = εΛN (f, s).

4 Use the Poisson summation formula to show that the function
ϑ(τ) =

∑
n∈Z exp(πin2τ) satisfies the transformation rule ϑ(−1/τ) =

√
−iτ ϑ(τ).

Use the Mellin transform of (ϑ(it)− 1)/2 to obtain the functional equation for the
Riemann ζ-function.

5 For congruence subgroups Γ1, Γ2 of SL2(Z), and α ∈ GL+
2 (Q) define the double

coset operator [Γ1αΓ2] on Mk(Γ1), and show that its image is contained in Mk(Γ2).

Define the operators <d> and Tp on Mk(Γ1(N)), for d and p prime to N . Show
that they commute, and that if an(f) are the Fourier coefficients of f ∈ Mk(Γ1(N)), then
for every p not dividing N ,

an(Tpf) = anp(f) + pk−1an/p(<p>f).
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