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1 (a) Lighthill’s equation describing aerodynamic sound generation is

∂2ρ′

∂t2
− c20∇2ρ′ =

∂2Tij

∂xi∂xj
, (1)

where for an inviscid fluid Tij = ρuiuj + p− c20ρ is the quadrupole distribution.

(i) Using equation (1), together with the free-space Green’s function for the wave
equation in three dimensions,

G(x, t) =
δ(t− |x|/c0)

4π|x|c20
,

show that the far-field sound generated by a compact quadrupole distribution is

ρ′(x, t) =
xixjS̈ij(t− |x|/c0)

4πc40|x|3
where Sij(t) =

∫
Tij(y, t)d3y

and ˙ denotes differentiation with respect to t. Show further that ρ′ scales like
O(m4), where m is the fluctuation Mach number.

(ii) Now consider motion at a single frequency ω. Show that in two dimensions ρ′

scales like O(m7/2).

[In two dimensions the free-space Green’s function for Helmholtz equation has the
far-field form

exp(−ik0|x|)√
k0|x|

where k0 = ω/c0.]

(b) Consider a shock wave (i.e. a surface of discontinuity) in a fluid, with equation
S(x, t) = 0, with S > 0 on one side of the shock and S < 0 on the other side.

(i) By writing the quadrupole distribution in equation (1) in the form

Tij = T+
ij H(S) + T−ij H(−S) ,

where T±ij are continuously differentiable functions and H() is the Heaviside step
function, show that the quadrupole terms present separately on either side of the
shock are augmented by extra sources located on the shock.

(ii) Now consider one-dimensional flow in which a shock, located at x = V t with V
constant, separates regions of uniform flow (fluid density, pressure and speed ρ1,
p1, u1 and ρ2, p2, u2 in x > V t and x < V t respectively). Show that Lighthill’s
equation is now

∂2ρ′

∂t2
− c20

∂2ρ′

∂x2
= Qδ′(x− V t) ,

where the quantity Q is to be determined.
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2 (a) Describe the use of the Wiener-Hopf technique to solve the Sommerfeld problem
of diffraction of a plane wave by an edge, i.e. solve

(∇2 + k2
0)φ = 0

subject to
∂φ

∂y
+
∂φi

∂y
= 0 on y = 0, x < 0 ,

where
φi = exp(+ik0x cos θ0 + ik0y sin θ0 + iωt)

is the incident potential, φ(x, y) exp(iωt) is the scattered potential and k0 = ω/c0.

Your answer should include a derivation of the geometrical optics field, and a
demonstration that the far-field form of the diffracted field is(

2
πk0r

)1/2 sin(θ0/2) sin(θ/2)
cos θ + cos θ0

exp(−ik0r − iπ/4) .

You need not consider the Fresnel regions around the geometrical optics boundaries. You
may quote without proof the result∫

Γ

f(k) exp(ikr cos θ − γr| sin θ|)dk ∼
(

2k0π

r

)1/2

f(k0 cos θ)| sin θ| exp(−ik0r + iπ/4)

as r →∞, where γ =
√
k2 − k2

0, and Γ is the steepest descent contour (which crosses the
real k axis at k = k0 cos θ and k = k0 sec θ).

(b) Consider the semi-infinite duct formed by the two rigid plates y = ±h, x < 0.
A duct mode with potential

φi = cos(nπy/h) exp(iωt− ikx) ,

where k =
√
k2
0 − n2π2/h2 is diffracted by the two edges.

(i) By considering the duct mode to be a superposition of two plane waves propagating
in positive and negative y directions, and using the answer to part (a) above, find
the diffracted far field to leading order in large k0h as a sum of the diffracted fields
from each edge.

(ii) Consider the directions
θ = ± tan−1(nπ/kh) ,

where θ is the observer angle relative to the positive x axis. Comment on the value of the
diffracted field found in (i) as compared to the value of the diffracted field from a single
edge.

Paper 82 [TURN OVER



4

3 (a) Consider the differential equation

d2x

dt2
+ (1 + fε2 + ε cos t)x = 0 ,

subject to x = 1, dx/dt = 0 at t = 0, where ε � 1 and f is an O(1) constant. Show
how the method of multiple scales can be used to find the leading-order approximation to
x(t; ε) which is uniformly valid for t ≤ O(1/ε2). For what range of values of the parameter
f is your solution stable? Write down the leading-order solution explicitly in this case.

(b) A slowly-varying duct in two dimensions lies parallel to the x axis, and has
rigid walls given by y = ±R(εx), where ε � 1. The mean sound speed also varies slowly
along the duct, with the effect that the acoustic pressure p exp(iωt) satisfies

∇.
(

1
k2
0

∇p
)

+ p = 0 ,

where k0 = k0(εx). The wall-normal component of∇p vanishes on the walls. All quantities
are nondimensional.

(i) Show that for a propagating duct mode the leading-order approximation for p takes
the form

A(X) exp(−ikx) cos(nπy/R) , k =
√
k2
0 − (nπ/R)2 ,

where n is an integer and X = εx.

(ii) Find an explicit expression for the amplitude A(X).
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4 (a) Consider a shear flow with nondimensional mean velocity U = (U(εy), 0, 0)
and with uniform nondimensional mean density ρ0 and sound speed c0. The equations
describing the propagation of sound waves with fluctuation density ρ′ and velocity u′ are

∂ρ′

∂t
+ U.∇ρ′ + ρ0∇.u′ = 0 ,

and

ρ0

(
∂u′

∂t
+ U.∇u′ + u′.∇U

)
= −∇(c20ρ

′) .

By writing the fluctuating quantities in the form

A(X) exp(iωt− iθ(X)/ε) ,

show that
(ω −U.∇θ)2 = c20(∇θ)2 . (∗)

High-frequency sound is generated on a flat rigid surface underneath a free stream. Explain
briefly, by means of a sketch, what implications (∗) has for the direction of propagation
through the wall boundary layer.

(b) You are given that Burgers’ equation

qZ − qqθ = δqθθ

is related to the diffusion equation
ψZ = δψθθ

by the Cole-Hopf transformation

q = 2δ
ψθ

ψ
,

and that the general solution of the diffusion equation is

ψ(θ, Z) =
1√

4πδZ

∫ ∞

−∞
ψ(θ′, 0) exp(−(θ − θ′)2/4δZ)dθ′ .

(i) For the initial data q(θ, Z = 0) = sin θ, show that in the limit δ � 1

q(θ, Z) ∼ 4δ sin θ exp(−δZ) when δZ � 1 .

[You may use the identity

exp(x cos θ) =
∞∑

n=0

εnIn(x) cosnθ

where ε0 = 1, εn = 2, n ≥ 1, and In(x) is the modified Bessel function such that
In(−x) = (−1)nIn(x) and In(x) ∼ exp(x)/(2πx)

1
2 as x→∞.]
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(ii) The Fay solution of Burgers’ equation is

q(θ, Z) = 2δ
∞∑

n=1

sinnθ
sinh(nδZ)

.

Show that the Fay solution has the same behaviour for δZ � 1 as found in (i).
Show further that it satisfies

q(θ, Z) ∼ π

Z
tanh(πθ/2δZ)

when θ � 1, δZ � 1.

[Hint: You may find it helpful to re-express 1/sinh(nδZ) as a geometrical series in
odd powers of exp(−δZ) and then swap the orders of the summation. You are given the
identity

tanh(πx/2) ≡ 4x
π

∞∑
k=1

1
(2k − 1)2 + x2

. ]

END OF PAPER
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