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1 (i) A laminate is composed of 2 different materials with isotropic conductivities
a1I and a2I. The interfaces between these two materials have normal n = (1, 0, 0). The
volume fractions of these two materials in any samples of macroscopic dimensions are p1

and p2 respectively. Consider the steady state heat equation

−∇.(a(x)∇u(x)) = 0,

where the conductivity a(x) equals a1I in phase 1 and a2I in phase 2. The temperature
and the flux across the phase interfaces are continuous. Assuming that the temperature
gradient ∇u(x) is constant in each phase, deduce that the effective conductivity is given
by 

a1a2

p1a2 + p2a1
0 0

0 p1a1 + p2a2 0
0 0 p1a1 + p2a2

 .

(ii) A composite is composed of a number of different components which are
distributed periodically with the period being εY where ε is a micro lengthscale and
Y is the unit cube in Rd (d = 1, 2 or 3). The conductivity of the composite aε(x) is given
by aε(x) = a(x/ε) where a(y) = {aij(y)} is a Y -periodic matrix function that is positive
definite for each y ∈ Y . Consider the heat equation inside a d dimensional finite body Ω

− ∂

∂xi
(aε

ij(x)
∂

∂xj
uε(x)) = f(x),

with the zero temperature condition prescribed on the boundary of Ω. Using the two scale
asymptotic expansion

uε(x) = u0(x,
x
ε
) + εu1(x,

x
ε
) + ε2u2(x,

x
ε
) + . . . ,

where ui(x,y) (x ∈ Ω, y ∈ Y ) is Y -periodic with respect to y, deduce that the first term
u0 does not depend on y and satisfies the effective equation

−a∗ij
∂2u0

∂xi∂xj
= f(x).

Prove that the effective conductivity a∗ = {a∗ij} is given by

a∗ij =
∫

Y

(
aij(y) + aik(y)

∂wj(y)
∂yk

)
dy;

the functions wj(y) (j = 1, . . . , d) are Y -periodic and satisfy the equations

∂

∂yi

(
aik(y)

∂wj(y)
∂yk

)
= −∂aij(y)

∂yi
.

(iii) Consider the problem in part (ii) of this question in a one dimensional finite
domain. The conductivity is now a scalar quantity aε(x) = a(x/ε) where a(y) is periodic
with period 1. It is given that a(y) = a1 when 0 ≤ y < p1 and a(y) = a2 when p1 ≤ y < 1
(0 < p1 < 1, p1 + p2 = 1). Prove from the result in (ii) that the effective conductivity
is (a1a2)/(p1a2 + p2a1). Show that this is consistent with the result in part (i) of this
question.
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2 (i) A sphere B of radius r1 made of a material of isotropic conductivity a1I is placed
inside an infinite medium of isotropic conductivity a0I. Consider the steady state heat
equation

−∇.(a(x)∇u(x)) = 0 (1)

with the condition that u(x) → x3 when |x| → ∞. The conductivity a(x) equals a1I
when x is inside the sphere and a0I when x is outside. The centre of the sphere is at the
origin. By considering the special form of the solution u(x) = v(r) cos θ in the spherical
coordinates (r, θ, φ) (x3 = r cos θ), prove that

u(x) = x3 −
r3
1(a1 − a0)

r3(a1 + 2a0)
x3, x /∈ B,

=
3a0

a1 + 2a0
x3, x ∈ B,

where r = |x|. Deduce the polarization field P(x). [You may use the following form for
the Laplacian in the spherical coordinates

∇2u = urr +
2
r
ur +

1
r2

(uθθ + cot θuθ +
1

sin2 θ
uφφ). ]

(ii) A three dimensional body Ω contains N very small identical spheres B1, . . . , BN

which are well separated from each other. The conductivity of the inclusions is a1I and
the conductivity outside is a0I. By using the polarization field P(x) in part (i) of this
question, deduce that to the first order of the volume fraction p of all the inclusions in Ω,
the effective conductivity a∗ is approximated by

a∗ = a0I +
3pa0(a1 − a0)

a1 + 2a0
I.

(iii) Assume that the body Ω is the unit cube i.e. Ω = [0, 1]3. Consider a
temperature field of the form u(x) = x3 + v(x) where v(x) is an Ω-periodic function.
The mean temperature gradient in Ω is then i = (0, 0, 1). For a first approximation, we
can write the polarization field as

P(x) =
N∑

i=1

3a0(a1 − a0)
a1 + 2a0

χi(x)i,

where χi(x) is the characteristic function of the ith inclusion Bi. Consider the perturbation
field e(x) = ∇u(x)−i, so that e = ∇u′(x) for some Ω-periodic function u′(x) that satisfies

∇2u′(x) = − 1
a0

∇.P(x).

This equation is then solved by the Fourier transform (you are not asked to do this).
For an inclusion Bi with centre y, the field e(x) on the surface of a sphere S which is
significantly larger than Bi with the same centre y (all the other inclusions Bj j 6= i are
outside S) is then given by

e(x) = −3a0(a1 − a0)
(a1 + 2a0)

Λii/pi,
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where pi = |Bi|/|Ω| is the volume fraction of the inclusion Bi and Λi is a 3 × 3 matrix.
From this deduce the following improved estimate for the effective conductivity

a∗ = a0I +
3pa0(a1 − a0)

a1 + 2a0
I−

(
3a0(a1 − a0)

a1 + 2a0

)2 N∑
i=1

Λi.

(iv) Now assume that Ω is a sphere of radius R0. The effective conductivity of
this sphere is assumed to be isotropic and can be written as a∗I. In part (i), without
the sphere B, the solution of equation (1) is given by u(x) = x3 so at a point x which is
far from the origin, this solution is perturbed by a term −(r3

1(a1 − a0))/(r3(a1 + 2a0))x3

due to the sphere B. The spheres B1, . . . , BN are well separated so that their total effect
on the solution at this point can be approximated as the summation of the effect of each
individual sphere. Use this to deduce the Maxwell approximation

a∗ = a0 +
3pa0(a1 − a0)

3a0 + (1− p)(a1 − a0)
.

When the composite is isotropic, the matrices Λi in (iii) satisfy
∑N

i=1 Λi ≈ −(p2/(3a0))I.
From this show that the Maxwell approximation is consistent with the approximation in
(iii).
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3 (i) Consider the heat equation

−∇.(a(x)∇u(x)) = 0 in Ω,

u(x) = λ.x on ∂Ω,

in a three dimensional finite body Ω where the conductivity a(x) is symmetric. For each
function v(x), let

J(v) =
∫

Ω

a(x)∇v(x).∇v(x)dx.

Prove the minimum energy principle

J(u) = min{J(v) : v(x) = λ.x on ∂Ω}.

(ii) Assume that Ω is a composite consisting of two phases with isotropic conductiv-
ities a1I and a2I (a1 < a2). The volume fractions of the phases are p1 and p2 respectively.
The effective conductivity is isotropic and is denoted by a∗I. Deduce the Voigt bound
a∗ ≤ p1a1 + p2a2.

(iii) The Hashin-Shtrikman variational principle for the material in part (ii) can be
written as

J(u) ≤ |Ω|a2λ.λ + 2λ.

∫
Ω

q(x)dx +
∫

Ω

q(x).∇v(x)dx−
∫

Ω

(a− a2I)−1q(x).q(x)dx, (2)

where q(x) is a vector field and v(x) satisfies

a2∇2v(x) + ∇.q(x) = 0 in Ω,

v(x) = 0 on ∂Ω.

The solution of this equation is

v(x) = −
∫

Ω

q(x′).∇x′g(x,x′)dx′,

where g(x,x′) is the Green function that satisfies

a2∇2
x′g(x,x′) = −δ(x− x′),

g(x,x′) = 0 when x′ ∈ ∂Ω

The probability that a point x is in phase 1 is p1 and in phase 2 is p2. The material is
isotropic so that the probability that x is in phase i and x′ is in phase j is pij(|x − x′|)
for some function pij(r) (i, j = 1, 2). When |x − x′| > ρ for some microscopic length ρ,
pij(|x− x′|) = pipj . Furthermore when |x− x′| ≤ ρ,

∇x∇x′g(x, x′) ≈ 1
3a2

Iδ(x− x′)−H(x− x′),

where the matrix function H(x) satisfies: for all R > 0
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∫
∂BR

H(x)dS = 0,

where BR is the ball of radius R with centre at the origin. Moreover∫
Ω

∫
Ω

∇x∇x′g(x,x′)dxdx′ = 0.

Choose the vector field q(x) as t(a1−a2)λχ1(x) where χ1(x) is the characteristic function
of phase 1. Taking the ensemble average of the right hand side of (2), prove that

a∗ ≤ (a1 − a2)p1

(
2t− t2

(
a1 − a2

3a2
p2 + 1

))
+ a2.

From this deduce the Hashin-Shtrikman upper bound

a∗ ≤ a2 +
3a2(a1 − a2)p1

3a2 + p2(a1 − a2)
.

(iv) Without proof, write down the Hashin-Shtrikman variational principle for the
lower bound and the Hashin-Shtrikman lower bound.

END OF PAPER
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