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PAPER 77

FUNDAMENTALS OF ATMOSPHERE–OCEAN DYNAMICS

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

Clarity and explicitness of reasoning will attract more credit
than perfection of computational detail.

(x, y, z) denotes right-handed Cartesian coordinates and (u, v, w) the corresponding
velocity components; t is time; the gravitational acceleration is (0, 0,−g) where g is
a positive constant; ẑ = (0, 0, 1) is a unit vector directed vertically upward.
The fluid is always incompressible. ‘Ideal fluid’ always means that buoyancy
diffusion can be neglected where relevant, as well as viscosity. N denotes the
buoyancy frequency of a stratified fluid.
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1 Write down the nonlinear Boussinesq momentum, mass-continuity and buoyancy
equations for a continuously stratified, non-rotating ideal fluid. Buoyancy effects should
be represented in the equations by a suitably defined buoyancy acceleration σ(x, t), to be
specified. Define the buoyancy frequency N(z). State briefly the conditions under which
the Boussinesq approximation is valid, given the incompressibility of the fluid.

In a fluid that is unbounded above, 2-dimensional internal gravity waves of small
amplitude are generated by a moving boundary z = ε sin(kx − ωt) where ε, k and ω are
real constants with |ω| < N . Carefully state, and justify, the boundary condition that can
be applied at z = 0, when ε is sufficiently small in a sense to be specified.

When N is constant, derive the dispersion relation for a plane internal gravity
wave, by using appropriately tilted axes or otherwise. State the appropriate radiation
condition for the wave generation problem. Derive the steady-state solution to that
problem, satisfying the radiation condition as well as the boundary condition at z = 0.
Show by a sketch how the wavecrests are oriented when the boundary undulations move
from left to right. Give an expression for the angle the wavecrests make with the horizontal.
[You may quote without proof any standard results on group velocity.]

Find the time-averaged rate W at which the boundary does work upon the fluid
above it, per unit horizontal area.

Show from the equations of motion that, provided the pressure and velocity fields
satisfy certain conditions, which you should specify, then

∂ū

∂t
= − ∂

∂z
uw

where the overbars denote the average with respect to x.

In the foregoing wave generation problem, ε is now made a function of t that
vanishes for t < 0 but grows slowly toward a small constant value ε∞ as t→∞. Briefly
state how to modify your solution, on the assumption that ε grows sufficiently slowly, and
use the modified solution to show correct to O(ε2) how the mean flow ū(z, t) evolves in
response to the waves. In the alternative reference frame that moves with the boundary,
deduce the rate of decrease of mean-flow kinetic energy per unit horizontal area, correct
to O(ε2). Show that this is equal to W , and briefly explain why.
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2 Consider 2-dimensional motion of a Boussinesq, continuously stratified, non-rotat-
ing, constant-N ideal fluid subject to an artificial force field F(x, z, t) = (F, 0, 0) that
generates motion from an initial state of rest. Write down the linearized momentum
equations that apply when F is weak enough. In terms of a streamfunction ψ(x, z, t) such
that (u,w) = (∂ψ/∂z, −∂ψ/∂x), derive the corresponding equation for the y component
of vorticity.

If the time-dependence of F contains only frequencies � N , how would you expect
the horizontal scale of the response to compare with the vertical scale? What is the
implication for the balance of terms (a) in the vertical momentum equation, and (b) in
the vorticity equation?

Suppose that F (x, z, t) = f(x, t)eimz with f(x, t) zero for t < 0, ∀x, and zero also
for |x| > a, ∀t, where a is a constant. Suppose also that, within |x| < a and for t > 0,
f increases gradually toward a steady profile f(x,∞) 6 fmax, say, and that it does so
slowly enough that |∂2f/∂x∂t| � |mNfmax|. Show that the vorticity equation, suitably
approximated, then has the solution

ψ =
−i eimz

2m

∫ t

−∞

[
f
(
x− c (t′ − t), t′

)
+ f

(
x+ c (t′ − t), t′

)]
dt′ ,

where c = N/|m|, and that the corresponding buoyancy-acceleration field is

σ =
−icmeimz

2

∫ t

−∞

[
f
(
x− c (t′ − t), t′

)
− f

(
x+ c (t′ − t), t′

)]
dt′ .

Compute the vertical acceleration after making a change of variable that converts the
range of integration to (−∞, 0), and deduce that the condition |∂2f/∂x∂t| � |mNfmax|
is enough to ensure the self-consistency of your approximation.

Show that the disturbance vanishes for |x| > ct + a, and draw graphs showing
qualitatively the dependence of ψ and σ upon x.
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3 Write down the shallow-water momentum and mass-conservation equations for a
layer of homogeneous ideal fluid of depth h(x, y, t) in a frame of reference rotating with
constant angular velocity (0, 0, 1

2f). Allow for a sloping bottom boundary z = b(x, y),
taking care to distinguish between the layer depth h and the free-surface elevation ζ(x, y, t).

Derive the equation for the vertical component of absolute vorticity, qa(x, y, t).
Deduce Rossby’s exact potential-vorticity conservation theorem, explaining why it is h
and not ζ that enters into the expression for the potential vorticity. Why is there no term
in w∂/∂z ?

Assume now that q � f where q is the relative vorticity, q = qa − f , and that
ζ � h00 and b� h00 where h = h00 + ζ − b with h00 constant. Derive an approximate
expression for the potential vorticity, correct to the first order of small quantities, in which
the leading term is f/h00.

For small Rossby numbers show that the horizontal velocity field can be represented
by a streamfunction ψ(x, y, t), to be specified. Show that the approximate potential
vorticity just derived is then proportional to

f +
f

h00
b + ∇ 2

Hψ − ψ

L 2
R

(∗)

where LR is a constant to be specified. Specify also the meaning of the symbol ∇ 2
H .

Consider a thought-experiment in which the initial state is one of relative rest, with
ζ = 0 everywhere, and with a lower boundary specified by

b = b(y) =

{
εa, y > a
εy, |y| < a

−εa, y < − a

where a and ε are positive constants with aε/h00 � 1. Assume that a breaking Rossby
wave perfectly mixes the potential vorticity in the central zone |y| < a, so that the x-
averaged potential vorticity is unaffected outside |y| < a but now has the constant value
f/h00 within |y| < a. Sketch the change in (∗) as a function of y. Deduce that within
|y| < a the resulting velocity profile u(y) is given by

u =
εfL 2

R

h00

{
−1 +

(
1 +

a

LR

)
exp

(
−a
LR

)
cosh

(
y

LR

)}
.

In the case LR � a, show further that

u =
εfL 2

R

h00

{
y2 − a2

2L 2
R

+O

(
a

LR

)3
} (

|y| < a
)
.

In the case LR � a, sketch the profiles of u(y) and ζ(y), for |y| < 2a.
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4 Write an essay on the conservation and invertibility principles for potential vorticity
in a stably-stratified ideal fluid, in a rotating reference frame having constant angular
velocity Ω = (0, 0, 1

2f). The essay should cover the following:

(i) a statement and derivation of Ertel’s theorem for the Rossby–Ertel potential vorticity
ρ−1(2Ω +∇× u) · ∇α (you should explain the meaning of the notation);

(ii) a statement and derivation of the conservation theorem for the quasi-geostrophic
potential vorticity, Q say, for an unbounded Boussinesq, stably-stratified ideal fluid with
constant buoyancy frequency N , and a demonstration that in appropriately stretched
coordinates Q is the Laplacian of a certain streamfunction, up to an additive constant;

(iii) an explanation of what is meant by inversion in the unbounded quasi-geostrophic case,
including a clear statement of the mathematical problem to be solved;

(iv) an illustrative example in which Q is piecewise constant, with the value f outside a
spherical region in the stretched coordinates, and a slightly greater value f +Q′ inside
that region;

(v) a brief indication of why, in that example, the relative vorticity in the equatorial plane
of the spherical region has opposite signs inside and outside the region;

(vi) a brief discussion of why the conservation and invertibility principles help to simplify
the task of understanding stratified, rotating flows, with comments on the implications
of the single time derivative in the evolution equation.

END OF PAPER
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