
MATHEMATICAL TRIPOS Part III

Thursday 1 June, 2006 1.30 to 4.30

PAPER 76

NONLINEAR CONTINUUM MECHANICS

Attempt FOUR questions.

There are SIX questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury Tag
Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1 Prove Nanson’s formula,
dS = JF−T dS0,

relating an element of area dS0 to the element of area dS into which it is deformed under a
deformation whose gradient is F. Deduce the relation between components σji of Cauchy
stress and PIi of nominal stress. Define Kirchhoff stress (with components τji) and relate
this to nominal stress.

Given that the rate of working of the stress, per unit reference volume, is PIiḞiI ,
show that it is also expressible as τjiDij , where D denotes the Eulerian strain-rate.

State what is meant by a stress measure T, conjugate to a strain measure E. Show
that the stress measure T(2) conjugate to the strain measure E(2) = (1/2)(FT F − I)
satisfies the relation

T(2) = F−1τF−T .

Find a corresponding expression for the stress measure T(−2) conjugate to E(−2) =
(1/2)(I− F−1F−T ). Interpret both stress measures in relation to a coordinate net which
deforms with the body.
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2 Express in integral form the first law of thermodynamics (the energy balance)
relative to initial (Lagrangian) coordinates, for a body of initial density ρ0 and internal
energy per unit mass u, subjected to heat input r and body force g per unit mass, nominal
surface tractions n0

IPIi and (outward) heat flux n0
Iq

0
I . Give the corresponding integral form

of the entropy inequality. Deduce the local form of the energy balance,

ρ0u̇ = ρ0r −
∂q0I
∂XI

+ PIiḞiI ,

where FiI denote the components of the deformation gradient F. Give also the local form
of the entropy inequality.

Express these local relations in terms of the free energy density ψ = u − θη in
place of u, where θ denotes temperature and η is entropy per unit mass. Given that ψ
is expressed as a function of F, the temperature θ and a set of internal variables {ξr},
deduce the constitutive relations

PIi = ρ0
∂ψ

∂FiI
, η = −∂ψ

∂θ

and the remaining inequality which involves the dissipative term fr ξ̇r, where fr =
−∂ψ/∂ξr. Show also that

ρ0θη̇ = ρ0r −
∂q0I
∂XI

+ fr ξ̇r.

Now assume that the material is constrained so that φ(F) = h(θ). Deduce that
now

PIi = ρ0
∂ψ

∂FiI
+ q

∂φ

∂FiI
,

where q is an undetermined scalar, and give the corresponding relation for the entropy.

Linearize about a stress-free state for which F = I, θ = θ0 (so that h(θ0) = 1),
η = η0 and q = 0. Disregarding (as usual) the distinction between Lagrangian and Eulerian
coordinates, deduce the equations of linear thermoelasticity, subject to the constraint of
incompressibility (so that φ(F) = det(F))

σji = Cjilk
∂uk

∂xl
+ βji(θ − θ0) + qδji,

ρ0(η − η0) = Ce(θ − θ0)− βji
∂ui

∂xj
+ qh′(θ0),

expressing the constants Cjilk, βji and Ce in terms of ψ.
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3 A circular cylinder with generators aligned with the 3-axis has, before deformation,
radius A and height H. It is composed of incompressible, isotropic hyperelastic material
and has energy function W (λ1, λ2, λ3) in terms of the principal stretches λr, r = 1, 2, 3
(λ1λ2λ3 = 1). It is subjected to axial stretch and torsion, so that

x1 = λ−1/2[X1 cos(αX3)−X2 sin(αX3)],

x2 = λ−1/2[X1 sin(αX3) +X2 cos(αX3)],
x3 = λX3.

Show that the principal stretches are given by

λ2
1 = λ−1,

λ2
2,3 =

1
2

{
λ−1(1 + α2R2) + λ2 ±

[
(λ−1(1 + α2R2) + λ2)2 − 4λ

]1/2
}
,

where R2 = X2
1 +X2

2 .

By equating the rate of working of the applied loads, per unit initial height, to
Mα̇+Nλ̇, show that

M = 2π
∂

∂α

∫ A

0

RdRW (λ1, λ2, λ3)

and give the corresponding expression for N . Evaluate M and N , when the cylinder is
composed of Mooney material with energy function

W (λ1, λ2, λ3) =
1
2
µ1

(
λ2

1 + λ2
2 + λ2

3 − 3
)
− 1

2
µ2

(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)
,

where µ1 and µ2 are constants.
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4 A hyperelastic material occupying a domain Ω prior to deformation has energy
function W (F) and mass density ρ0 per unit undeformed volume and is subject to a
constraint φ(F) = 0. It is maintained in equilibrium under dead-load body force g and
nominal surface tractions Ti = NIPIi. Show that the equilibrium is stable against a small
time-dependent perturbation δx if∫

Ω

(
∂2W

∂FiI∂FjJ
+ q

∂2φ

∂FiI∂FjJ

)
δFiIδFjJ dX > 0

for all admissible δF not identically zero, where q is the multiplier in the definition of the
stress, in the equilibrium configuration.

Consider now a unit cube (when undeformed), composed of neo-Hookean material
with energy function W (F) = (µ/2)(FiIFiI − 3), subjected to dead-load all-round tensile
loading T (so that PIi = T if i = I and PIi = 0 otherwise). By considering possible
equilibrium configurations

F =

λ 0 0
0 λ−1/2 0
0 0 λ−1/2

 ,

show that
either λ = 1 or T/µ = λ+ λ−1/2.

Show also that
q = Tλ− µλ2.

Deduce that there are two solutions of the given form, with λ 6= 1, so long as T/µ >
3(2−2/3).

Investigate the stability of each of these equilibria, against uniform perturbations of
the form δF = diag(δλ,−(1/2)λ−3/2δλ,−(1/2)λ−3/2δλ). Show that the solution λ = 1 is
stable (against such a perturbation) if T/µ < 2. Show that, when there are three solutions,
two are stable and one is unstable. Identify the value of T/µ corresponding to the point
of bifurcation.
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5 Differentiate the stress measure T = FT τF to derive the “lower convected” time-
derivative of the Kirchhoff stress τ ,

δlτ

δlt
= τ̇ + LT τ + τL,

where L denotes the Eulerian rate of deformation. Check explicitly that this stress-rate is
objective.

The “lower convected Oldroyd” fluid is incompressible and has constitutive relation
σ = σd − pI, where

δlσ
d

δlt
+

σd

τ
=

2µ
τ

D + 2µr
δlD
δlt

,

the Eulerian strain-rate being D. Show that, equivalently,

σd(t) = 2µrD(t) +
2(µ− µr)

τ

∫ t

−∞
e−(t−t′)/τF−T (t)FT (t′)D(t′)F(t′)F−1(t) dt′.

Give this relation explicitly, for the time-dependent simple shear deformation

F(t) =
(

1 γ(t)
0 1

)
,

disregarding the trivial 3-components. Evaluate the integrals for the steady-state case
γ(t) = γ̇t, where γ̇ is constant, and hence deduce the normal stress difference σ11 − σ22.

6 Consider the infinitesimal deformation of incompressible, isotropic, elasto-plastic
material, obeying the non-hardening von Mises yield criterion

σ′ijσ
′
ij = 2k2

(where k is a constant) and the associated flow rule. Show that it is consistent, under the
plane strain condition that displacement u has the form (u1(x1, x2), u2(x1, x2), 0), to take
both elastic and plastic parts of the strain component e33 equal to zero.

Show that, for such deformation, the yield condition is satisfied identically by taking

σ11 = −p+ k sin(2φ), σ22 = −p− k sin(2φ), σ12 = −k cos(2φ).

[The signs are chosen to facilitate the solution of the problem to follow.] Define “α-lines”
and “β-lines” and show that

p− 2kφ = constant on an α-line,
p+ 2kφ = constant on a β-line.

A plane strain specimen of material of the type described contains a V-notch of
semi-angle γ, whose line of symmetry is the x1-axis. It is subjected to tensile loading
which is symmetric about this axis. Calculate the traction components on one surface of
the notch, in the plastic region, and deduce the values of p and φ there. Show that, on
the x1-axis just ahead of the notch, σ22 = k(2 + π − 2γ).
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