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SECTION A

1 (a) Prove that any ν-stage Runge–Kutta method of order 2ν is necessarily A-stable.
[You may use, without proof, properties of Padé approximants to the exponential.]

(b) Describe (without proof) how to construct explicitly the coefficients of such a
method.

2 The equation

∂

∂t
u =

∂

∂x
u +

∂

∂y
u, t > 0, 0 6 x, y 6 1,

with periodic boundary conditions, is approximated by the fully discretized scheme

un+1
k,j = µ(un

k+1,j + un
k,j+1 − un

k−1,j − un
k,j−1) + un−1

k,j ,

where un
k,j ≈ u(k∆x, j∆x, n∆t) and µ = ∆t/∆x.

(a) Determine the order of the method.

(b) Find the range of µ > 0 that yields stability.

3 Consider the multistep method with the polynomials

ρ(w) = w3−(1+2α)w2+(1+2α)w−1, σ(w) =
1
6
[(5+α)w3−(4+8α)w2+(11−5α)w].

(a) For which values of α is the method convergent?

(b) What is the order of the method for different values of α?

(c) For which values of α is the method A-stable?

4 We consider the two-point boundary-value problem for the Airy equation

u′′ − xu = 0, u(0) = 1, u′(1) = 0.

(a) Show that the problem can be written in the form L(u) = 0, where L is
a positive definite operator. Thereby, quoting appropriate definitions and theorems,
formulate a variational problem whose unique minimum is the solution of the equation.

(b) The above variational problem is approximated with the Ritz method, using
hat functions. Derive explicitly the discretized equations.
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SECTION A (continued)

5 The advection equation ∂u/∂t = ∂u/∂x is solved by the two-step finite difference
method

un+1
m = a−2(µ)un

m−2 + a−1(µ)un
m−1 + a1(µ)un

m+1 + a2(µ)un
m+2 + un−1

m ,

where µ = ∆t/∆x.

(a) Find functions ak(µ), k = ±1,±2, such that the method is of order at least
four.

(b) Assuming that we are solving the Cauchy problem, prove that µ = 1
2 gives a

stable method, while the choice µ = 3
2 results in instability.

SECTION B

6 Describe the Engquist–Osher method for a single, one dimensional, hyperbolic
nonlinear conservation law

∂u

∂t
+

∂f(u)
∂x

= 0.

Prove that it is stable, provided that f is convex, differentiable and possesses a unique
stagnation (sonic) point.

7 Write an essay on the Mehrstellenverfahren (finite difference methods of added
accuracy) for the Poisson equation.

END OF PAPER
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