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1 Explain Cartan’s procedure for obtaining the curvature of a metric using differential
forms.

Hence, obtain the curvature of the metric

ds2 =
−dt2 + dx2 + dy2 + dz2

z2

and show that the metric is an Einstein metric.

What can you say about the isometries of the metric?

2 Explain, using Stokes’s theorem, how the equation

d ? J = 0

for a one-form J , gives rise to a conserved charge.

A certain theory of the Quantum Hall Effect in 2+1 dimensional Minkowski
spacetime E2,1, is governed by the action

S =
∫

E2,1

(
A ∧ dA− c ? J ∧A

)
,

where A and J are one-forms and c is a constant. Show that if the action is gauge invariant,
then the current J must be conserved.

Obtain the equations of motion for A and show that they imply that the current
J is conserved. If γ is a closed loop at constant time, obtain a relation between

Φ =
∫

γ

A

and the total charge enclosed by γ.

If A is a U(1) connection, what is the significance of Φ?

Calculate the energy momentum tensor

Tµν = − 2√
−g

δS

δgµν
.
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3 Define the moment map µ : P → g? for the action of a group G on a symplectic
manifold {P, ω}. Derive a condition on G ensuring that the Poisson algebra generated by
the moment map coincides with the Lie algebra g of G.

If P = T ?R3 with its standard symplectic structure and the Hamiltonian is

H =
1
2
p2 − Mm

r
,

show that the angular momentum
L = r× p

and Runge-Lenz vector

K = p× L− Mmr
r

Poisson commute with H. Given the Poisson brackets

{Li, Lj} = εijkLk,

{Li,Kj} = εijkKk,

{Ki,Kj} = −2HεijkLk,

what can you say about the action generated by L and K on the level sets of H?

4 Define a principal fibre bundle and an associated vector bundle. Under what
circumstances is a principal bundle trivial?

What does it mean to say that a manifold is parallelisable? Give examples of spheres
which are parallelisable.

Show that every group manifold is parallelisable.

Show that every semi-simple group admits an Einstein metric.
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5 Establish the isomorphisms

(a) SO(4) ≡ SU(2)× SU(2)/Z2,

(b) SO(3, 1) ≡ SL(2, C)/Z2 ,

(c) SO(2, 2) ≡ SL(2, R)× SL(2, R)/Z2,

(d) SO(3) ≡ SU(2)/Z2,

(e) SO(2, 1) ≡ SL(2, R)/Z2 .

Show further that the unit quaternions can be identified with the three-sphere S3.

By regarding
ω ∧ ω

as a quadratic form on ω ∈ Λ2(R4), show that SO(3, 3) ≡ SL(4, R)/Z2.

In all cases, where relevant, the identity component of the group should be taken.

6 Explain how, using the Marsden-Weinstein reduction procedure, starting with a 2n-
dimensional symplectic manifold {P, ω} and a Lie group G acting by symplecto-morphisms,
one may obtain a new symplectic manifold {P ′, ω′} of dimension 2n−2g, where g = dimG.

Illustrate your description by considering either an isotropic simple harmonic
oscillator or a free particle moving in the plane.

7 Write an essay on geometric quantisation. Your essay should include a treatment
of pre-quantisation and the problem of finding a suitable polarisation.

END OF PAPER
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