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1 Basic concepts. Consider the following four density operators for a system with
Hilbert space dimension N = 2 (qubit):

ρ̂0 =
1
4

(
3 0
0 1

)
, ρ̂1 =

1
2

(
1 −1
−1 1

)
, ρ̂2 =

1
4

(
2 1
1 2

)
, ρ̂3 =

(
0 0
0 1

)
.

(a) Compute the eigenvalues for the density matrices above.

(b) Which of the density matrices represent pure states? Give an equivalent wavefunc-
tion representation.

(c) Which of the states are unitarily equivalent?

(d) Assume the two-level system evolves according to the dynamical law (setting ~ = 1)

i d
dt ρ̂(t) =

[
Ĥ[f(t)], ρ̂(t)

]
,

where Ĥ[f(t)] = σ̂z + f(t)σ̂x, [A,B] = AB − BA is the usual matrix commutator
and the Pauli matrices are:

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
.

Which of the states ρ̂k, k = 0, 1, 2, 3, above can be inter-converted by applying a
suitable (open-loop) control function? Briefly justify your answer.

NB: You do not need to find a suitable control. A simple existence argument based on the
controllability of the system and kinematical constraints will suffice.
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2 Criteria for Controllability of Hamiltonian Systems. The following state-
ments relate to (Hamiltonian) quantum control systems governed by a control Hamiltonian

Ĥ[f(t)] = Ĥ0 +
M∑

m=1

fm(t)Ĥm, (1)

where the fm(t) are independent control fields and Ĥm (for m = 0, 1, . . . ,M) are Hermitian
operators. An N -level system is a system with Hilbert space dimension N . We shall
assume that M,N are integers with 1 ≤ M < ∞, 1 < N < ∞.

For each of the statements below, decide if it is true or false and briefly justify your
answer.

(a) If the dynamical Lie algebra generated by an N -level system with control Hamil-
tonian (1) has dimension N2 − 1 then

a1: the system is controllable.

a2: we can dynamically generate any unitary operator with determinant one, or
equivalently, any unitary operator up to a global phase.

a3: we can dynamically generate any unitary operator.

(b) Consider a system of (even) dimension N = 2`. The anti-Hermitian matrices
iĤm (for m = 0, 1, . . . ,M) satisfy the relation x̂T Ĵ + Ĵ x̂ = 0 for x̂ = iĤm with

Ĵ =
(

0 −Î`

Î` 0

)
, where Î` is the identity matrix in dimension `. Then

b1: the system is controllable.

b2: the system is pure-state controllable.

If there is insufficient information, what additional information would be necessary
to decide?

(c) Pure-state controllability implies controllability if

c1: the system dimension is N = 2.

c2: the system dimension is even and greater than 2.

(d) A Morse oscillator with non-zero anharmonicity (B 6= 0) is controllable if all
transitions between adjacent elements (and only those) are allowed.
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3 Consider a control-linear system governed by the control Hamiltonian

Ĥ[f(t)] = Ĥ0 +
M∑

m=1

fm(t)Ĥm,

where the fm(t) are independent control fields and the Ĥm, m = 0, 1, . . . ,M are Hermitian
operators. An N -level system is a system with Hilbert space dimension N . We shall
assume that M,N are integers with 1 ≤ M < ∞, 1 < N < ∞.

(a) Let Û(t, t0) be the time-evolution operator of the system satisfying the Schrödinger
equation (setting ~ = 1)

i d
dt Û(t, t0) = Ĥ[f(t)]Û(t, t0),

and set Û(t, t0) = Û0(t, t0)ÛI(t, t0) where Û0 = exp[−itĤ0]. Show that ÛI(t, t0)
satisfies

i
d

dt
ÛI(t, t0) =

M∑
m=1

fm(t)H̃m(t)ÛI(t, t0),

with H̃m(t) = Û0(t, t0)†ĤmÛ0(t, t0).

(b) Consider a control-linear system as above with N = 2, M = 1 and Ĥ0 = (ω/2)σ̂z,
Ĥ1 = σ̂x where σ̂x and σ̂z are the usual Pauli matrices. Show that if we apply a field
of the form f(t) = A(t) cos(ωt + φ) the rotating wave approximation Hamiltonian
is

f(t)H̃1(t) = f(t)Û0(t, t0)†Ĥ1Û0(t, t0) ≈
A(t)

2

(
0 e−iφ

eiφ 0

)
.[

You may use the following result:

Û0(t, t0)†σ̂xÛ0(t, t0) =
(

0 eiωt

e−iωt 0

)
.
]

(c) Consider a (strongly regular) 4-level system with allowed transitions as shown in
Figure 1 below. Assume the system is initially in state |1〉. Describe briefly how we
can, in principle, transfer the system to state |4〉 by applying a sequence of simple
control pulses of the form fk(t) = Ak(t) cos(µkt + φk) where µk ∈ {ω1, ω2, ω3}.

Fig 1: Level diagram (ω1 6= ω2 6= ω3 6= ω1)

(d) Suppose we would like to instead prepare the system in the superposition state
|Ψ〉 = [|1〉−|2〉+ |4〉]/

√
3. Outline how we could solve this problem using geometric

control.
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4 Optimal Control. Consider the variational optimal control functional J =
A−D − C, where

A[ρv] = 〈〈Â | ρv(tF )〉〉,

D[f , ρv, Av] =
∫ tF

t0

〈〈Av(t)| ∂
∂t

+
i

~
Ltot[f(t)]|ρv(t)〉〉 dt,

C[f ] =
p0

~

M∑
m=1

λm

2

∫ tF

t0

f2
m(t) dt,

with Ltot[f(t)] = L0 + LD +
∑M

m=1 fm(t)Lm and f(t) = (f1(t), . . . , fM (t)).

(a) For the functional J , identify the objective, dynamic constraints and penalty terms.
What do the operators ρv and Av represent? What is the significance of the
parameters λm?

(b) Give necessary conditions for J to have an extremum, and state the Euler-Lagrange
equations for the functional above. (You do not need to derive the Euler-Lagrange
equations.)

(c) Write down a possible objective functional for each of the following control
problems. (Assume an N -level system, N < ∞, and t0 = 0.)

c1: Maximize the population of state |5〉 at time tF = 10.

c2: Maximize the expectation value of the projection onto the state |Ψ〉 =
(|1〉 − i|5〉)/

√
2 at time tF = 100.

c3: Maximize the energy of the system at time tF .

(d) Describe briefly how you could implement a complicated shaped (optical) pulse
such as the one shown in Fig. 2 experimentally using pulse shaping equipment.

Fig 2: Optimally Shaped Pulse
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5 Adiabatic Control. Consider a three-level system in a Λ configuration as in
Figure 3. Two lasers are available to resonantly excite the |1〉 ↔ |2〉 and |2〉 ↔ |3〉
transition, respectively. Assuming the fields are of the form f12(t) = A12(t) cos(ω12t) and
f23(t) = A23(t) cos(ω23t), where A12(t) and A23(t) are slowly varying envelope functions,
the interaction picture Rotating Wave Approximation Hamiltonian for the system is

ĤRWA[Ω12(t),Ω23(t)] =

 0 Ω12(t) 0
Ω12(t) 0 Ω23(t)

0 Ω23(t) 0

 ,

where Ω12(t) = A12(t)d12/2~ and Ω23(t) = A23(t)d23/2~ are the (effective) pulse envelopes
of laser fields f12(t) and f23(t), respectively, and d12 and d23 are the respective dipole
moments.

Fig 3: 3-level Λ system

(a) Show that |Ψ0(t)〉 = cos θ(t)|3〉 − sin θ(t)|1〉, where θ(t) = arctan[Ω23(t)/Ω12(t)], is
an eigenstate of the RWA Hamiltonian with eigenvalue λ = 0.[
You may find the following trigonometric identities useful:

cos(x) = 1√
1+tan2(x)

, sin(x) = tan(x)√
1+tan2(x)

.
]

(b) Assume the system is initially in the state |3〉. Describe how we can adiabatically
transfer the population from the state |3〉 to the state |1〉. Provide a sketch of the
pulse sequence.

(c) Is this scheme robust with regard to (i) decay of the excited state |2〉, (ii)
perturbations of the pulse envelopes, and (iii) decoherence of |1〉 ↔ |3〉 transition?
Justify your answers briefly.

(d) When during the pulse sequence is the eigenstate |Ψ0(t)〉, as defined in (a), equal
to (|3〉 − |1〉)/

√
2?

END OF PAPER
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