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1 Find the field equation and the conserved energy for the scalar field theory with
the Lagrangian density

L = 1
2 (∂tφ)2 − 1

2 (∂xφ)2 − (1− cos φ).

Find the static kink solution interpolating between two vacua

φ(−∞) = 0, φ(∞) = 2π.

How many other kink solutions are there?

Let φ0 be a solution to the field equation, and let φ1 satisfy

∂ρ(φ1 − φ0) = 2b sin
(

φ1+φ0
2

)
, ∂τ (φ1 + φ0) = 2b−1 sin

(
φ1−φ0

2

)
,

where τ = (x + t), ρ = (x− t) and b is a constant. Show that φ1 is also a solution to the
field equation.

2 Let v = v(x, y) ∈ Rn be a vector which satisfies a system of equations

Dxv := ∂xv + Axv = 0, Dyv := ∂yv + Ayv = 0, (1)

where Ax, Ay are gl(n, R) valued functions on R2.

Show that (1) is consistent iff the nonlinear equation

∂xAy − ∂yAx + [Ax, Ay] = 0 (2)

holds. Give the geometric interpretation of (2), and find its most general solution.

Let (Ai,Φ) : R3 → gl(n, R) be the Yang–Mills potential and the Higgs field.
By considering a symmetry reduction of ASDYM or otherwise, demonstrate that the
Bogomolny equations

1
2
εijkFjk = DiΦ

admit a Lax representation analogous to (2) but containing a parameter. Here DiΦ =
∂iΦ + [Ai,Φ] and Fij = ∂iAj − ∂jAi + [Ai, Aj ].

3 Write an essay on Yang–Mills instantons on R4.
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4 Write down a twistor equation relating points (ωA, πA′) in twistor space PT to
points xAA′

in the complexified Minkowski space MC .

Let F (ωA, πA′) be a patching matrix for a holomorphic vector bundle µ : E → PT
with respect to the covering

U = {(ωA, πA′), π1′ 6= 0}, Ũ = {(ωA, πA′), π0′ 6= 0}.

Assume that E is trivial on twistor lines, and show that on these lines

F = H̃H−1,

where H and H̃ are holomorphic in πA′ in U and Ũ respectively.

Deduce the existence of a one–form ΦAA′ on MC such that

πA′
ΦAA′ = H−1πA′ ∂

∂xAA′ H,

and show that this one–form satisfies the ASDYM equations.

END OF PAPER
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