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1 In synchronous gauge (with metric perturbations h0µ = 0 about a flat FRW universe
with Ωtot = 1), linear perturbations of a multicomponent fluid obey the following evolution
equations

δ′N + (1 + wN )ik · vN + 1
2 (1 + wN )h′ = 0 ,

v′
N + (1− 3wN )

a′

a
vN +

wN

1 + wN
ikδN = 0 ,

h′′ +
a′

a
h′ + 3

(
a′

a

)2 ∑
N

(1 + 3wN )ΩNδN = 0 ,

(†)

where δN is the density perturbation, ΩN is the fractional density, vN is the velocity
and PN = wNρN is the equation of state of the Nth fluid component, and k is the
comoving wavevector (k = |k|), h is the trace of the metric perturbation and primes
denote differentiation with respect to conformal time τ (dτ = dt/a).

(i) Assume that the late universe (t > teq) is filled with two components, (a)
comoving non-relativistic matter (cold dark matter) ρC with no pressure (PC = 0) and
(b) a gas of randomly-oriented cosmic strings ρS with an average equation of state
PS = −ρS/3. Show that the cold dark matter–string gas equations arising from (†)
become

δ′′C +
a′

a
δ′C −

3
2

(
a′

a

)2

ΩCδC = 0 ,

δ′′S + 2
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a

(
δ′S −

1
3
δ′C

)
− 1

3
k2δS −

(
a′

a

)2

ΩCδC = 0 .

(ii) By considering a new time variable, η ≡ ρS/ρC , show that the dynamical
equation for the cold dark matter perturbation δC can be re-expressed as

d2δC

dη2
+

3 + 4η

2η(1 + η)
dδC

dη
− 3

2η2(1 + η)
δC = 0 . (∗)

[Hint: Recall that
(

a′

a

)2

=
8πG

3
ρtota

2 ,
a′′

a
−

(
a′

a

)2

= −4πG

3
(ρtot + Ptot)a2 ,

ρ′N + 3
a′

a
(ρN + PN ) = 0 .]

(iii) Consider early times η � 1 when the cold dark matter dominated over the
string component and seek a power series solution of (∗) of the form δC = a0η

α +a1η
α+1 +

. . .. Hence or otherwise show that there is an approximate growing mode solution of the
form

δC ≈ Ak η (1− 4
7η) , (η � 1) .

Compare this to the expected growth rate for cold dark matter perturbations in a matter
dominated universe.

(iv) Define the Jeans’ length λJ. Now consider solving the cold dark matter–string
gas equations in the opposite asymptotic limit η � 1. Show that the cold dark matter
perturbation is approximately frozen, δC ≈ const. Draw a qualitative diagram of the cold
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dark matter transfer function T (k) for wavenumbers coming inside the horizon after the
time of matter-radiation equality, t > teq. What is the analogue here of the adiabatic
initial condition for radiation δR = 4

3δC when k � aH? Briefly discuss the apparent
qualitative behaviour of the string perturbations δS on both superhorizon and subhorizon
scales.
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2 (i) Consider a photon with four-momentum pµ (pµpµ = 0) propagating in a
perturbed FRW universe (flat Ω = 1) with line element

ds2 = a2(τ)
[
−dτ2 + (δij + hij)dxidxj

]
where k is the comoving wavevector and k̂i = ki/|k|. A comoving observer with four-
velocity uµ = a−1(1, 0, 0, 0) measures the photon energy to be E = −uµpµ = ap0 ≡ q/a

where q is the comoving momentum. Use the geodesic equation dpµ

dλ + Γµ
νσpνpσ = 0 to

show that for a photon trajectory along (unit) direction n̂i we have to linear order

dq

dτ
= −1

2
qh′

ij n̂
in̂j ,

dn̂i

dτ
= O(hij) .

[Hint: You may assume that Γ0
00 = a′

a , Γ0
0i = 0, Γ0

ij = a′

a (δij + hij) + 1
2h′

ij , Γi
0j =

a′

a δij + 1
2h′

ij and Γi
jk = 1

2 (hij,k + hik,j − hjk,i).]

(ii) The photon distribution function f(x,p, τ) can be expanded about the Planck
spectrum f0(p, τ) = f0(q) as

f(x,p, τ) = f0(q) + f1(x, q, n̂, τ) ,

where the photon momentum p ≡ q/a. Show that the collisionless Boltzmann equation
df

dλ
≡ dxµ

dλ

∂f

∂xµ
+

dpµ

dλ

∂f

∂pµ
= 0

can be re-expressed in the form

∂f1

∂τ
+ n̂i ∂f1

∂xi
+

dq

dτ

df0

dq
+

dq

dτ

∂f1

∂q
+

dn̂i

dτ

∂f1

∂n̂i
= 0 ,

which, using the results from part (i), at linear order reduces to
∂f1

∂τ
+ ikµf1 =

1
2

df0

dq
h′

ij n̂
in̂j ,

where µ = k̂ · n̂. Finally, given that ργ is the background photon density, argue that the
brightness function

∆(x, n̂, τ) ≡ 4
∆T

T
≡ 4π

a4ργ

∫
qf1q

2dq

must therefore satisfy
∆′ + ikµ∆ = −2h′

ij n̂
in̂j . (‡)

(iii) Assume recombination occurs instantaneously at photon decoupling (τ = τdec)
with the brightness function given in Fourier space by only the two lowest moments,

∆(k, µ, τdec) = δγ(k, tdec) + 4n̂ · v(k, tdec) ,

where δγ is the photon density perturbation and v is the average fluid velocity. Briefly
describe the important physical mechanisms which make this a poor approximation on
small angular scales (with multipole ` < 200). Use this assumption and eqn (‡) to derive
the Sachs-Wolfe equation in real space for the temperature fluctuation in a direction n̂:

∆T

T
(x0, n̂, τ0) =

1
4
δγ(x, τdec) + n̂ · v(x, τdec)−

1
2

∫ τ0

τdec

h′
ij n̂

in̂jdτ .
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3 In the 3+1 formalism, we split spacetime using the line element

ds2 = −N2dt2 + (3)gij(dxi −N idt)(dxj −N jdt) ,

with lapse function N(t, xi), shift vector N i(t, xi) and (3)gij(xi) the three-metric on
constant time spacelike hypersurfaces Σ. The vector nµ = 1

N (1, N i) is normal to Σ
and defines the extrinsic curvature through

Kij ≡ −ni;j = − 1
2N

(
(3)gij,0 + Ni|j + Nj|i

)
,

where | denotes the covariant derivative in Σ.

(i) Consider the conformal 3-metric

(3)g̃ij = ((3)g)−1/3 (3)gij

where (3)g = det((3)gij) and, hence or otherwise, take the trace of the extrinsic curvature
expression to find

K ≡ (3)gijKij = − 1
2N

[
(3)ġ
(3)g

− 2N i
|i

]
.

In the context of an expanding universe (setting N i = 0), argue that −K/3 can be
interpreted as a locally defined Hubble parameter H(t, xi). [Hint: You may assume that
Tr(A−1dA/dt) = d(ln(det A))/dt for any matrix A with non-vanishing determinant.]

(ii) When linearising the 3+1 metric about a flat FRW universe, we define the
scalar perturbations by

N(t, xi) ≡ N̄(t)(1 + Φ(t, xi)) , Ni ≡ −a2B,i , (3)gij = a2(t)[(1− 2Ψ)δij − 2E,ij ] ,

and also ρ = ρ̄ + δρ and P = P̄ + δP , where bars denote background homogeneous
quantities. In synchronous gauge, we take Φ = 0 and B = 0. Given that metric
perturbations transform as

δg̃αβ = δgαβ − ḡαβ,γξγ − ḡγβξγ
,α − ḡαγξγ

,β under (t, xi) −→ (t̃, x̃i) = (t + ξ0, xi + ξi) ,

where ξi ≡ ∂iλ , show that there is a residual gauge freedom in synchronous gauge given
by the coordinate transformation,

ξ0 =
C(xi)

N̄
, λ = C(xi)

∫
N̄

a2
dt + D(xi) ,

where C and D are arbitrary functions of xi only. Briefly discuss the significance of
this gauge freedom during (a) inflation and (b) the standard hot big bang. In longitudinal
Newtonian gauge we take instead E = B = 0. Find a transformation law that expresses the
density perturbation δρ/ρ in Newtonian gauge in terms of synchronous gauge quantities.

(iii) Show that the quantity

ζ = Ψ− 1
3

δρ

ρ̄ + P̄
,
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is gauge-invariant and that it is independent of time on superhorizon scales, that is, ζ̇ = 0
for k � aH.

[Hint: You may assume a definite equation of state P = wρ, that the perturbed
energy density conservation equation is

δ̇ρ/N̄ = −3H(δρ + δP ) + (ρ̄ + P̄ )(κ− 3HΦ)−4u ,

and that the metric perturbation Ψ satisfies Ψ̇/N̄ = −HΦ+ 1
3κ+ 1

34χ , where4 ≡ ∇2/a2,
u generates the scalar velocity perturbation, and κ and χ generate the trace and traceless
part of Kij respectively. ]

END OF PAPER
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