MATHEMATICAL TRIPOS Part III

Wednesday 7 June 2006 1.30 to 4.30

PAPER 53

STRING THEORY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

Minor errors in numerical factors will not be heavily penalized.

The covariant world-sheet action for the bosonic string in flat space-time is

 $I = \frac{-1}{4\pi\alpha'} \int d\sigma d\tau \sqrt{-\det\gamma} \, \gamma^{\alpha\beta} \partial_\alpha X^\mu \partial_\beta X_\mu \,.$

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Derive the classical equations of motion and constraints for a closed bosonic string moving in *d*-dimensional Minkowski space-time.

Define the Virasoro generators and explain how they enter into the definition of physical states.

Show that the massless states of the closed string are given by $\zeta_{\mu\nu}\alpha_{-1}^{\mu}\tilde{\alpha}_{-1}^{\nu}|0,p\rangle$, where $|0,p\rangle$ is the ground state with momentum p_{μ} , α_{m}^{μ} and $\tilde{\alpha}_{m}^{\mu}$ are the usual bosonic oscillator modes and the polarization tensor $\zeta_{\mu\nu}$ satisfies conditions that should be derived.

What is the space-time interpretation of the massless closed-string states in critical (26-dimensional) string theory?

How do the space-time fields corresponding to these massless states enter into the functional integral for a closed string moving in a general space-time background?

How does the coupling constant dependence of closed-string perturbation theory arise from the functional integral formulation?

2 How may the constraints of the classical bosonic string be eliminated by use of the light-cone parameterisation?

Deduce the expression for the general excited physical state of a bosonic open string propagating in 26-dimensional Minkowski space-time with Neumann boundary conditions. What is the interpretation of such a string in terms of D-branes?

Suppose there is a circular spatial direction of circumference $2\pi R$. Show that the action of T-duality in this direction changes the boundary conditions from Neumann to Dirichlet.

An open string stretches between two Dp-branes in 26-dimensional Minkowski space separated by a distance d. Determine its ground-state energy and show that its mass becomes tachyonic when $d < d_0$, where d_0 should be determined.

Paper 53

3

3 Explain how the local symmetries of the bosonic string can be used to choose a parameterisation of the world-sheet so that the action reduces to that of d free bosons, at least on a world-sheet of spherical topology.

Show how this leads to the ghost action

$$I^{(b,c)} = -\frac{i}{2\pi} \int d\sigma d\tau \, c^{\alpha} \, \partial^{\beta} \, b_{(\alpha\beta)} \,,$$

where the components of the vector $c^{\alpha}(\sigma, \tau)$ are the anticommuting Faddeev–Popov ghosts and the components of the symmetric, traceless second-rank tensor, $b_{(\alpha\beta)}(\sigma, \tau)$, are the antighosts. [You may use the fact that

$$\int Db \, Dc \, \exp\left(-\frac{1}{2\pi} \int d\sigma d\tau \, b_{\alpha\beta} \, \mathcal{P}_{\delta}^{(\alpha\beta)} \, c^{\delta}\right) = \det \mathcal{P} \,,$$

where $\mathcal{P}^{(\alpha\beta)}_{\delta}$ is an operator that maps two-vectors into symmetric, traceless second-rank tensors.

Show further that this action can be written in world-sheet light-cone components as $i = \int_{-\infty}^{\infty} i dx$

$$I^{(b,c)} = \frac{i}{\pi} \int d\sigma d\tau \left(c^+ \partial_- b_{++} + c^- \partial_+ b_{--} \right),$$

where \pm denote light-cone components (defined so that $v^{\pm} = v^0 \pm v^1$, for any vector v^{α}).

Show that the total action, $I + I^{(b,c)}$ is invariant under the fermionic BRST transformations,

$$\begin{split} \delta_{\eta} X^{\mu} &= \eta \left(c^{+} \partial_{+} X^{\mu} + c^{-} \partial_{-} X^{\mu} \right), \qquad \delta_{\eta} c^{+} = \eta \, c^{+} \partial_{+} c^{+} \,, \qquad \delta_{\eta} c^{+} = \eta \, c^{-} \partial_{-} c^{-} \,, \\ \delta_{\eta} b_{++} &= \frac{i}{\alpha'} \eta \, \theta_{++} \,, \qquad \delta_{\eta} b_{--} = \frac{i}{\alpha'} \eta \, \theta_{--} \,, \end{split}$$

where η is a constant Grassmann parameter and $\theta_{\alpha\beta}$ is the energy-momentum tensor, which has components $\theta_{+-} = 0$ and

$$\theta_{++} = \partial_+ X^\mu \partial_+ X_\mu - i\alpha' \left[c^+ \partial_+ b_{++} + 2\partial_+ c^+ b_{++} \right] \,,$$

with a similar expression for θ_{--} .

Deduce that the BRST transformation is nilpotent, i.e., two successive transformations with parameters η_1 and η_2 annihilate any field so that

$$\delta_{\eta_1}\delta_{\eta_2}\Phi = 0\,,$$

where Φ is any of the world-sheet fields, X^{μ} , b or c. [You may use, without proof, the fact that $\delta_{\eta} \theta_{\alpha\beta} = 0$.]

Paper 53

[TURN OVER

4

4 The action for the open fermionic string propagating in 10-dimensional Minkowski space-time can be written in the form (in conformal gauge on a lorentzian world-sheet and with $\alpha' = 1/2$)

$$I = \frac{1}{\pi} \int d\sigma d\tau \, \left(2\partial_+ X^\mu \partial_- X_\mu + i\psi_2^\mu \partial_+ \psi_{2\mu} + i\psi_1^\mu \partial_- \psi_{1\mu} \right) \,,$$

where $\psi_a^{\mu}(\sigma,\tau)$ ($\mu = 0, 1, \ldots, 9$) are 10 Majorana world-sheet spinors with spinor index a = 1, 2, and $\partial_{\pm} = (\partial_{\tau} \pm \partial_{\sigma})/2$. Show that this action is invariant under the two-dimensional supersymmetry transformations

$$\delta_{\epsilon}X^{\mu} = -\frac{i}{2}\epsilon_{1}\psi_{1}^{\mu} - \frac{i}{2}\epsilon_{2}\psi_{2}^{\mu}, \qquad \delta_{\epsilon}\psi_{1}^{\mu} = \partial_{+}X^{\mu}\epsilon_{1}, \qquad \delta_{\epsilon}\psi_{2}^{\mu} = \partial_{-}X^{\mu}\epsilon_{2}, \qquad (*)$$

where ϵ_1 and ϵ_2 are the Grassmann-valued components of a constant world-sheet Majorana spinor.

The supercurrent, J^a_{α} , has components

$$J^1_+ = \psi^\mu_1 \partial_+ X_\mu \,, \qquad J^2_- = \psi^\mu_2 \partial_- X_\mu \,, \qquad J^2_+ = J^1_- = 0 \,.$$

Show that the supercharge, $q_{\epsilon} = \frac{1}{\pi} \int d\sigma (\epsilon_1 J^1_+ + \epsilon_2 J^2_-)$, generates the supersymmetry transformations (*) i.e., for any world-sheet field $\Phi(\sigma, \tau)$,

$$\delta_{\epsilon} \Phi = [q_{\epsilon}, \Phi].$$

[You may assume the equal- τ (anti)commutation relations,

$$[\partial_{\tau} X^{\mu}(\sigma,\tau), X^{\nu}(\sigma',\tau)] = -i\pi\delta(\sigma-\sigma')\eta^{\mu\nu}, \qquad \{\psi_i^{\mu}(\sigma,\tau), \psi_j^{\nu}(\sigma',\tau)\} = \pi\eta^{\mu\nu}\delta_{ij}\delta(\sigma-\sigma')$$

where $\eta^{\mu\nu}$ is the d-dimensional Minkowski metric.]

Using the (anti)commutation relations show that the anticommutator of two supercurrents can be written in the form

$$\{J^1_+(\sigma,\tau), J^1_+(\sigma',\tau)\} = \pi\delta(\sigma-\sigma')\,\theta_{++}(\sigma,\tau)\,,\qquad (*)$$

and hence determine the form of the energy-momentum tensor, θ_{++} .

Indicate, without proof and without detailed coefficients, the structure of the other (anti)commutation relations involving J_+ and θ_{++} that, together with (*), form a closed algebra.

How are physical states of the closed fermionic string defined in terms of the generators of this algebra?

END OF PAPER

Paper 53