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STRING THEORY

Attempt THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

Minor errors in numerical factors will not be heavily penalized.

The covariant world-sheet action for the bosonic string in flat space-time is

I =
−1

4πα′

∫
dσdτ

√
−det γ γαβ∂αX

µ∂βXµ .
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1 Derive the classical equations of motion and constraints for a closed bosonic string
moving in d-dimensional Minkowski space-time.

Define the Virasoro generators and explain how they enter into the definition of
physical states.

Show that the massless states of the closed string are given by ζµνα
µ
−1α̃

ν
−1|0, p〉,

where |0, p〉 is the ground state with momentum pµ, αµ
m and α̃µ

m are the usual bosonic
oscillator modes and the polarization tensor ζµν satisfies conditions that should be derived.

What is the space-time interpretation of the massless closed-string states in critical
(26-dimensional) string theory?

How do the space-time fields corresponding to these massless states enter into the
functional integral for a closed string moving in a general space-time background?

How does the coupling constant dependence of closed-string perturbation theory
arise from the functional integral formulation?

2 How may the constraints of the classical bosonic string be eliminated by use of the
light-cone parameterisation?

Deduce the expression for the general excited physical state of a bosonic open string
propagating in 26-dimensional Minkowski space-time with Neumann boundary conditions.
What is the interpretation of such a string in terms of D-branes?

Suppose there is a circular spatial direction of circumference 2πR. Show that the
action of T-duality in this direction changes the boundary conditions from Neumann to
Dirichlet.

An open string stretches between twoDp-branes in 26-dimensional Minkowski space
separated by a distance d. Determine its ground-state energy and show that its mass
becomes tachyonic when d < d0, where d0 should be determined.
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3 Explain how the local symmetries of the bosonic string can be used to choose a
parameterisation of the world-sheet so that the action reduces to that of d free bosons, at
least on a world-sheet of spherical topology.

Show how this leads to the ghost action

I(b,c) = − i

2π

∫
dσdτ cα ∂β b(αβ) ,

where the components of the vector cα(σ, τ) are the anticommuting Faddeev–Popov ghosts
and the components of the symmetric, traceless second-rank tensor, b(αβ)(σ, τ), are the
antighosts. [You may use the fact that∫

DbDc exp
(
− 1

2π

∫
dσdτ bαβ P(αβ)

δ cδ
)

= detP ,

where P(αβ)
δ is an operator that maps two-vectors into symmetric, traceless second-rank

tensors. ]

Show further that this action can be written in world-sheet light-cone components
as

I(b,c) =
i

π

∫
dσdτ (c+ ∂−b++ + c− ∂+b−−) ,

where ± denote light-cone components (defined so that v± = v0 ± v1, for any vector vα).

Show that the total action, I + I(b,c) is invariant under the fermionic BRST
transformations,

δηX
µ = η (c+ ∂+X

µ + c− ∂−X
µ) , δηc

+ = η c+ ∂+c
+ , δηc

+ = η c− ∂−c
− ,

δηb++ =
i

α′
η θ++ , δ

η
b−− =

i

α′
η θ−− ,

where η is a constant Grassmann parameter and θαβ is the energy-momentum tensor,
which has components θ+− = 0 and

θ++ = ∂+X
µ∂+Xµ − iα′

[
c+∂+ b++ + 2∂+c

+ b++

]
,

with a similar expression for θ−−.

Deduce that the BRST transformation is nilpotent, i.e., two successive transforma-
tions with parameters η1 and η2 annihilate any field so that

δη1
δη2

Φ = 0 ,

where Φ is any of the world-sheet fields, Xµ, b or c. [You may use, without proof, the fact
that δη θαβ = 0.]
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4 The action for the open fermionic string propagating in 10-dimensional Minkowski
space-time can be written in the form (in conformal gauge on a lorentzian world-sheet and
with α′ = 1/2)

I =
1
π

∫
dσdτ (2∂+X

µ∂−Xµ + iψµ
2 ∂+ψ2µ + iψµ

1 ∂−ψ1µ) ,

where ψµ
a (σ, τ) (µ = 0, 1, . . . , 9) are 10 Majorana world-sheet spinors with spinor index

a = 1, 2, and ∂± = (∂τ ± ∂σ)/2. Show that this action is invariant under the two-
dimensional supersymmetry transformations

δεX
µ = − i

2
ε1ψ

µ
1 − i

2
ε2ψ

µ
2 , δεψ

µ
1 = ∂+X

µε1 , δεψ
µ
2 = ∂−X

µε2 , (∗)

where ε1 and ε2 are the Grassmann-valued components of a constant world-sheet Majorana
spinor.

The supercurrent, Ja
α, has components

J1
+ = ψµ

1 ∂+Xµ , J2
− = ψµ

2 ∂−Xµ , J2
+ = J1

− = 0 .

Show that the supercharge, q
ε

= 1
π

∫
dσ(ε1J1

+ + ε2J
2
−), generates the supersymmetry

transformations (∗) i.e., for any world-sheet field Φ(σ, τ),

δεΦ = [qε ,Φ] .

[ You may assume the equal-τ (anti)commutation relations,

[∂τX
µ(σ, τ), Xν(σ′, τ)] = −iπδ(σ − σ′)ηµν , {ψµ

i (σ, τ), ψν
j (σ′, τ)} = πηµνδijδ(σ − σ′)

where ηµν is the d-dimensional Minkowski metric.]

Using the (anti)commutation relations show that the anticommutator of two
supercurrents can be written in the form

{J1
+(σ, τ), J1

+(σ′, τ)} = πδ(σ − σ′) θ++(σ, τ) , (∗)

and hence determine the form of the energy-momentum tensor, θ++.

Indicate, without proof and without detailed coefficients, the structure of the other
(anti)commutation relations involving J+ and θ++ that, together with (∗), form a closed
algebra.

How are physical states of the closed fermionic string defined in terms of the
generators of this algebra?
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