

MATHEMATICAL TRIPOS Part III

Tuesday 6 June, 2006 9 to 12

PAPER 29

ELLIPTIC CURVES

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 (i) Let E be an elliptic curve over the finite field \mathbb{F}_q . State and prove Hasse's estimate for the order of $E(\mathbb{F}_q)$.

(ii) Let E_1 and E_2 be elliptic curves over \mathbb{F}_q and let $\pi : E_1 \to E_2$ be an isogeny defined over \mathbb{F}_{q^2} . Let ϕ_1 (resp. ϕ_2) be the *q*th power Frobenius endomorphism on E_1 (resp. E_2). Show that if $\pi \phi_1 = -\phi_2 \pi$ then

$$|E_1(\mathbb{F}_q)| + |E_2(\mathbb{F}_q)| = 2(q+1).$$

[Standard facts about isogenies may be quoted without proof provided you state them clearly.]

2 Let *E* be the elliptic curve over \mathbb{Q} given by

$$y^2 + y = x^3 + 4x^2 - 2x$$

for which you may assume $\Delta = -91$.

- (i) Describe the group law on E in terms of the chord and tangent process.
- (ii) Let $P_1 = (0,0)$ and $P_2 = (-2, -4)$. Compute $2P_1, 3P_1$ and $P_1 \oplus P_2$.
- (iii) Compute the order of $\widetilde{E}(\mathbb{F}_p)$ for p = 2, 3, 5.
- (iv) Determine the torsion subgroup of $E(\mathbb{Q})$.
- (v) Show that $P_1 + 5P_2$ does not have integral co-ordinates.

3 EITHER

(i) Let K be a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O}_K and maximal ideal $\pi \mathcal{O}_K$. Show that if \mathcal{F} is a formal group over \mathcal{O}_K then $\mathcal{F}(\pi \mathcal{O}_K)$ contains a subgroup of finite index isomorphic to \mathcal{O}_K under addition.

OR

(ii) Write an essay on heights and their application to the proof of the Mordell-Weil theorem.

4 Describe a procedure, that often works in practice, to compute the rank of an elliptic curve over \mathbb{Q} with a rational 2-torsion point. Illustrate by finding the rank of

$$E: \quad y^2 = x^3 + 8x^2 - 7x.$$

END OF PAPER

Paper 29