

MATHEMATICAL TRIPOS Part III

Thursday 8 June, 2006 1.30 to 3.30

PAPER 28

ANALYTIC NUMBER THEORY

Attempt **TWO** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Illustrate the method of Tchebychev by proving that $\pi(x) = O(x/\log x)$. Hence establish the result of Mertens that

$$\sum_{p \leqslant x} \frac{\log p}{p} = \log x + O(1).$$

Deduce by partial summation, or otherwise, that, for any $\delta > 0$, the series $\sum 1/(p(\log p)^{\delta})$, summed over all primes p, converges.

2 Prove that $\zeta(s) \neq 0$ on the line $\sigma = 1$.

Write down a relation between

$$\int_0^x \psi(u) du$$

and $\zeta'(s)/\zeta(s)$, where ψ is the Tchebychev function. Describe how it enables one to verify that the integral is asymptotic to $\frac{1}{2}x^2$ as $x \to \infty$ and so gives the prime number theorem.

3 State and prove the functional equation for $\zeta(s)$.

State also the Riemann-von Mangoldt formula. Deduce from the latter that if $\gamma_1, \gamma_2, \ldots$ is the increasing sequence of positive ordinates of the zeros of $\zeta(s)$ then $\gamma_n \sim 2\pi n/\log n$ as $n \to \infty$. Explain what is meant by the Riemann hypothesis in this context.

4 Describe the main ideas of the Selberg upper-bound sieve.

Indicate how it leads to the result that the number of primes p with $p \leq N$ such that p + 2 is prime is $\ll N/(\log N)^2$.

5 Prove Dirichlet's theorem on primes in arithmetical progressions assuming that $L(1,\chi) \neq 0$ for a real, non-principal character χ .

It is known from the Siegel-Walfisz theorem that the number $\pi(x, q, a)$ of primes $p \leq x$ in the arithmetical progression $a, a + q, a + 2q, \ldots$ with (a,q) = 1 satisfies $\pi(x,q,a) \sim (1/\phi(q))x/\log x$ as $x \to \infty$. Deduce by the partial summation formula, or otherwise, that

$$\sum_{p \leqslant x, \ p \equiv a \pmod{q}} \frac{1}{p} \sim \frac{1}{\phi(q)} \log \log x \quad \text{as} \quad x \to \infty.$$

END OF PAPER

Paper 28