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1 Illustrate the method of Tchebychev by proving that π(x) = O(x/ log x). Hence
establish the result of Mertens that∑

p6x

log p
p

= log x+O(1).

Deduce by partial summation, or otherwise, that, for any δ > 0, the series∑
1/(p(log p)δ), summed over all primes p, converges.

2 Prove that ζ(s) 6= 0 on the line σ = 1.

Write down a relation between ∫ x

0

ψ(u)du

and ζ ′(s)/ζ(s), where ψ is the Tchebychev function. Describe how it enables one to verify
that the integral is asymptotic to 1

2x
2 as x→∞ and so gives the prime number theorem.

3 State and prove the functional equation for ζ(s).

State also the Riemann-von Mangoldt formula. Deduce from the latter that
if γ1, γ2, . . . is the increasing sequence of positive ordinates of the zeros of ζ(s) then
γn ∼ 2πn/ log n as n → ∞. Explain what is meant by the Riemann hypothesis in this
context.

4 Describe the main ideas of the Selberg upper-bound sieve.

Indicate how it leads to the result that the number of primes p with p 6 N such
that p+ 2 is prime is � N/(logN)2.

5 Prove Dirichlet’s theorem on primes in arithmetical progressions assuming that
L(1, χ) 6= 0 for a real, non-principal character χ.

It is known from the Siegel-Walfisz theorem that the number π(x, q, a) of primes
p 6 x in the arithmetical progression a, a + q, a + 2q, . . . with (a, q) = 1 satisfies
π(x, q, a) ∼ (1/φ(q))x/ log x as x → ∞. Deduce by the partial summation formula, or
otherwise, that ∑

p6x, p≡a(mod q)

1
p
∼ 1
φ(q)

log log x as x→∞.
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