

MATHEMATICAL TRIPOS Part III

Monday 12 June, 2006 1.30 to 4.30

PAPER 26

CYCLOTOMIC FIELDS

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Notation: Throughout, p will denote an odd prime number, \mathbb{Z}_p the ring of p-adic integers, and $R = \mathbb{Z}_p[[T]]$ the ring of formal power series in an indeterminate T with coefficients in \mathbb{Z}_p . For each $n \ge 0$, ζ_n will denote a primitive p^{n+1} -th root of unity with $\zeta_{n+1}^p = \zeta_n$. We let K_n be the field $\mathbb{Q}(\zeta_n)$. For each prime q, μ_q will denote the group of q-th roots of unity.

1 Prove that there exists a unique map $\psi: R \to R$ such that, for all $f \in R$,

$$\psi(f)\left((1+T)^p - 1\right) = \frac{1}{p} \sum_{\xi \in \mu_p} f\left(\xi(1+T) - 1\right).$$

Prove that, for all integers $n \ge 1$, we have

$$\psi\left(T^{np}+T^{np-1}\right)\equiv T^{n}+T^{n-1}\,mod\,p\,R\,.$$

2 Let a, b be integers with (a, p) = (b, p) = 1, and, for each integer $n \ge 0$, define

$$c_n(a,b) = \frac{\zeta_n^{-a/2} - \zeta_n^{a/2}}{\zeta_n^{-b/2} - \zeta_n^{b/2}}.$$

Prove that $N_{n,n-1}(c_n(a,b)) = c_{n-1}(a,b)$ for all $n \ge 1$, where $N_{n,n-1}$ denotes the norm map from K_n to K_{n-1} . Put $c(a,b) = (c_n(a,b))$, and compute the higher logarithmic derivatives

$$\delta_k\left(c(a,b)\right)$$

for all $k \ge 1$.

3 Define an Euler system for the tower of fields K_n^+ (n = 0, 1, 2, ...), where K_n^+ denotes the maximal real subfield of K_n . Prove that every cyclotomic unit in this tower gives rise to an Euler system, verifying in detail the three axioms for the Euler system in this case.

4 Write an essay sketching the proof of the main conjecture on cyclotomic fields via Iwasawa's theorem.

END OF PAPER

Paper 26