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1 Discuss the extent to which the geometric properties of a Riemannian manifold are
spectrally determined, outlining, in particular, the historic development of the subject.

2 Show how the subspace T 6 F4
3 spanned by the vectors (0, 1, 1, 1) and (1, 1,−1, 0)

may be used to construct two lattices L+ and L− in R4 such that the flat tori R4/L± have
the same length spectrum but are not isometric.

3 Prove that if p : N → M is a finite, normal, locally isometric covering of a
Riemannian manifold with covering transformation group U , then the heat kernels KN

and KM of N and M respectively are related by:

KM (x, y, t) =
∑
g ∈U

KN (x̃, g(ỹ), t) (∗)

where x̃ and ỹ are arbitrary, fixed choices of points such that p(x̃) = x any p(ỹ) = y.

[Your proof should establish that the right hand side of (∗) and any operation that you
require are well-defined.]

Deduce Sunada’s Theorem that, if N is a finite normal covering of M1 and M2 with
covering transformation groups U1 and U2 that are Gassman equivalent in a group T of
isometries of N , then M1 and M2 are isospectral.

[You may assume that, for any isometry h of N ,∫
N

KN

(
x, hgh−1(x), t

)
ωN (x) =

∫
N

KN (x, g(x), t)ωN (x). ]

4 Describe how to construct a Riemann surface M (of constant curvature −1)
admitting a given group T of isometries. Describe the quotients M0 = T/M and, for
a given subgroup U of T , M1 = U \M .

Explain how one can tell whether M0 and M1 admit metrics of constant curvature
−1 without singularities. Derive the formulae for the Euler characteristics of M , M0 and,
when it has no singularities, M1.
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5 Certain groups Ti have subgroups Ui and Vi and generators Ai and Bi that have
the permutation representations on the cosets of Ui and Vi given in the following table:

Group Generators Action on cosets of Ui Action on cosets of Vi

T1 A1 (1 2 3)(4 5 6)(7 8 9)(10 11 12) (1 2 3)(4 5 6)(7 8 9)(10 11 12)
B1 (1 4 10)(2 7 6)(3 8 9)(5 11 12) (1 4 10)(2 7 6)(5 8 9)(3 11 12)

T2 A2 (0 1 2 3 4 5 6) (0 1 2 3 4 5 6)
B2 (0 1 4 6 2 5 3) (0 3 4 1 6 2 5)

T3 A3 (1) (0 3) (2 6 4 5) (4) (25) (0 1 6 3)
B3 (0) (1 2 5) (3 6 4) (0) (1 4 3) (2 5 6)

Show how, using the relevant set of data, to construct isospectral surfaces of genus 2.
Establish whether or not they are isometric when given a metric of constant curvature -1.

[You may assume any general results that you require without proof and may also assume,
but should state clearly, any further specific hypotheses that you need.]

Indicate briefly how the data you have not used will produce similar pairs of surfaces
of genus three and four and state, in each case, whether, when given a metric constant
curvature -1, they are isometric.

END OF PAPER

Paper 23


	Rubric
	1
	2
	3
	4
	5

