

## MATHEMATICAL TRIPOS Part III

Friday 9 June, 2006 9 to 12

## PAPER 23

## SPECTRAL GEOMETRY

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

**STATIONERY REQUIREMENTS** Cover sheet Treasury Tag

Script paper

**SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.  $\mathbf{2}$ 

1 Discuss the extent to which the geometric properties of a Riemannian manifold are spectrally determined, outlining, in particular, the historic development of the subject.

**2** Show how the subspace  $T \leq \mathbb{F}_3^4$  spanned by the vectors (0, 1, 1, 1) and (1, 1, -1, 0) may be used to construct two lattices  $L^+$  and  $L^-$  in  $\mathbb{R}^4$  such that the flat tori  $\mathbb{R}^4/L^{\pm}$  have the same length spectrum but are not isometric.

**3** Prove that if  $p : N \to M$  is a finite, normal, locally isometric covering of a Riemannian manifold with covering transformation group U, then the heat kernels  $K_N$  and  $K_M$  of N and M respectively are related by:

$$K_M(x, y, t) = \sum_{g \in U} K_N\left(\tilde{x}, g(\tilde{y}), t\right) \tag{(*)}$$

where  $\tilde{x}$  and  $\tilde{y}$  are arbitrary, fixed choices of points such that  $p(\tilde{x}) = x$  any  $p(\tilde{y}) = y$ .

[Your proof should establish that the right hand side of (\*) and any operation that you require are well-defined.]

Deduce Sunada's Theorem that, if N is a finite normal covering of  $M_1$  and  $M_2$  with covering transformation groups  $U_1$  and  $U_2$  that are Gassman equivalent in a group T of isometries of N, then  $M_1$  and  $M_2$  are isospectral.

[You may assume that, for any isometry h of N,

$$\int_{N} K_N\left(x, hgh^{-1}(x), t\right) \omega_N(x) = \int_{N} K_N(x, g(x), t) \omega_N(x).$$

4 Describe how to construct a Riemann surface M (of constant curvature -1) admitting a given group T of isometries. Describe the quotients  $M_0 = T/M$  and, for a given subgroup U of T,  $M_1 = U \setminus M$ .

Explain how one can tell whether  $M_0$  and  $M_1$  admit metrics of constant curvature -1 without singularities. Derive the formulae for the Euler characteristics of M,  $M_0$  and, when it has no singularities,  $M_1$ .

| Group                 | Generators                                         | Action on cosets of $U_i$                                                                                                     | Action on cosets of $V_i$                                                                                                           |
|-----------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| $T_1$                 | $\left \begin{array}{c}A_1\\B_1\end{array}\right $ | $\begin{array}{c}(1 \ 2 \ 3)(4 \ 5 \ 6)(7 \ 8 \ 9)(10 \ 11 \ 12)\\(1 \ 4 \ 10)(2 \ 7 \ 6)(3 \ 8 \ 9)(5 \ 11 \ 12)\end{array}$ | $ \begin{array}{c} (1 \ 2 \ 3)(4 \ 5 \ 6)(7 \ 8 \ 9)(10 \ 11 \ 12) \\ (1 \ 4 \ 10)(2 \ 7 \ 6)(5 \ 8 \ 9)(3 \ 11 \ 12) \end{array} $ |
| <i>T</i> <sub>2</sub> | $\left \begin{array}{c}A_2\\B_2\end{array}\right $ | $(0\ 1\ 2\ 3\ 4\ 5\ 6)\\(0\ 1\ 4\ 6\ 2\ 5\ 3)$                                                                                | $(0\ 1\ 2\ 3\ 4\ 5\ 6)\\(0\ 3\ 4\ 1\ 6\ 2\ 5)$                                                                                      |
| $T_3$                 | $\begin{vmatrix} A_3\\ B_3 \end{vmatrix}$          | $\begin{array}{c}(1) (0 \ 3) (2 \ 6 \ 4 \ 5) \\(0) (1 \ 2 \ 5) (3 \ 6 \ 4)\end{array}$                                        | $\begin{array}{c} (4) \ (25) \ (0 \ 1 \ 6 \ 3) \\ (0) \ (1 \ 4 \ 3) \ (2 \ 5 \ 6) \end{array}$                                      |

**5** Certain groups  $T_i$  have subgroups  $U_i$  and  $V_i$  and generators  $A_i$  and  $B_i$  that have the permutation representations on the cosets of  $U_i$  and  $V_i$  given in the following table:

Show how, using the relevant set of data, to construct isospectral surfaces of genus 2. Establish whether or not they are isometric when given a metric of constant curvature -1.

[You may assume any general results that you require without proof and may also assume, but should state clearly, any further specific hypotheses that you need.]

Indicate briefly how the data you have not used will produce similar pairs of surfaces of genus three and four and state, in each case, whether, when given a metric constant curvature -1, they are isometric.

## END OF PAPER