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SECTION A

1 (a) Show that the four-manifold CP2#CP2 contains a smoothly embedded copy of
RP3, with disconnected complement.

[You may find it useful to consider the unit tangent bundle of S2.]

(b) Let X = #n
i=1CP2. Show that the group of isometries of the intersection form

QX contains a subgroup G isomorphic to the symmetric group Sn. Show also that every
isometry in G is induced by a self-diffeomorphism of X.

[An isometry is an invertible linear map H2(X; Z) → H2(X; Z) which preserves
the intersection form.]

(c) Show that there is no continuous map S2×S2 → CP2#CP2 of non-zero degree.

2 In this question, (X, g) is a closed, oriented, Riemannian four-manifold, Σ ⊂ X a
closed, oriented two-manifold smoothly embedded in X.

(a) Suppose that L → X is a U(1)-bundle and s a section with transverse zero-set
s−1(0). Suppose that s−1(0) = Σ as oriented manifolds.

Explain why, if ∇ is a U(1)-connection in L, i F (∇) may be regarded as an ordinary
two-form (i.e. a section of Λ2

X). Prove that i F (∇) is closed, and that its cohomology class
[i F (∇)] ∈ H2

dR(X) is independent of ∇.

(b) Prove that there is some U(1)-connection ∇ in L such that i F (∇) is a g-
harmonic two-form, and that when b1(X) = 0, ∇ is unique up to gauge transformations.

(c) Suppose X = CP2
(i.e. the complex projective plane with the opposite

orientation from the usual complex orientation). Show that every line bundle L admits a
unique gauge-orbit of ASD connections.

(d) Suppose X = S2×S2. Show that there is a line bundle L which does not admit
any ASD connections. [Consider L⊕ L∗.]
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3 (a) Prove that a flat SU(2)-connection in the trivial bundle over an open square
(−1, 1)2 is equivalent to the trivial connection.

(b) State a relation between flat connections over a manifold and representations
of its fundamental group.

Let T be the punctured 2-torus, (S1 × S1) \ {point}. Let E → T be the trivial
SU(2)-bundle, G its group of gauge transformations. Fix a point x ∈ T , and let

Gx = {u ∈ G : u(x) = 1}.

Let M̃(T ) be the space of Gx-orbits of flat SU(2)-connections in E. Explain how to identify
M̃(T ) with S3 × S3.

(c) Let M(T ) be the space of G-orbits of flat SU(2)-connections in E. Show that
M(T ) has a dense open set U such that U is homeomorphic to S2 × (0, 1) and M(T ) \ U
is homeomorphic to [0, 1] ∪ [0, 1] (disjoint union).

SECTION B

4 (a) Let E denote the trivial SU(2)-bundle over S3, AE the space of SU(2)-
connections. The Chern-Simons functional

CS:AE → R/Z

is defined as follows: let W be a compact oriented four-manifold with boundary ∂W = S3,
EW → W an SU(2)-bundle extending E → S3. Then

CS(∇) =
1

8π2

∫
W

TrF (∇̃)2 mod Z,

where ∇̃ is an SU(2)-connection in W extending W .

Explain briefly why the value of CS(∇) is well-defined, independent of the choices
of W , EW and ∇̃. Show that

d

dt

∣∣∣∣
t=0

CS(∇+ ta) =
1

4π2

∫
S3

Tr (F (∇) ∧ a).

Show that if u is a gauge transformation of E which extends to a gauge transformation of
EW then

CS(u · ∇) = CS(∇).

(b) State and prove the Uhlenbeck-Donaldson compactness theorem for ASD
connections in an SU(2)-bundle with Euler number 1 over a closed, oriented Riemannian
four-manifold. [State any analytic results you use.]
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5 In this question, X is a closed, oriented, simply connected, negative-definite four-
manifold, g a Riemannian metric on X, and ∇ a g-ASD connection in an SU(2)-bundle E
over X.

(a) Write down the three-term elliptic complex associated with ∇. Prove that it is
a complex. (You do not need to prove that it is elliptic.) Write down a formula for the
index of the associated elliptic operator.

(b) Suppose that ∇ is reducible, with holonomy group S1 ⊂ SU(2). What is the
dimension of H0

∇? Justify your answer.

(c) State the Kuranishi model for the zero-set of a smooth map between Hilbert
spaces which has Fredholm derivative.

Let M be the space of gauge-orbits of g-ASD connections. Suppose that ∇ has
holonomy group S1 and H2

∇ = 0. Show that there is an open neighbourhood of [∇] in M
which is homeomorphic to a neighbourhood of [0] in

Cd/S1, d = 4e(E)− 1,

where λ ∈ S1 ⊂ C acts by scalar multiplication by λ2.

END OF PAPER
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