

MATHEMATICAL TRIPOS Part III

Friday 9 June, 2006 1.30 to 3.30

PAPER 22

SMOOTH FOUR-MANIFOLDS

Attempt **ONE** question from Section A, and **ONE** from Section B. There are **FIVE** questions in total.

Section A questions carry 40% weight; and Section B questions carry 60% weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION A

1 (a) Show that the four-manifold $\mathbb{CP}^2 \# \mathbb{CP}^2$ contains a smoothly embedded copy of \mathbb{RP}^3 , with disconnected complement.

[You may find it useful to consider the unit tangent bundle of S^2 .]

(b) Let $X = \#_{i=1}^n \mathbb{CP}^2$. Show that the group of isometries of the intersection form Q_X contains a subgroup G isomorphic to the symmetric group S_n . Show also that every isometry in G is induced by a self-diffeomorphism of X.

[An isometry is an invertible linear map $H^2(X;\mathbb{Z}) \to H^2(X;\mathbb{Z})$ which preserves the intersection form.]

(c) Show that there is no continuous map $S^2 \times S^2 \to \mathbb{CP}^2 \# \mathbb{CP}^2$ of non-zero degree.

2 In this question, (X, g) is a closed, oriented, Riemannian four-manifold, $\Sigma \subset X$ a closed, oriented two-manifold smoothly embedded in X.

(a) Suppose that $L \to X$ is a U(1)-bundle and s a section with transverse zero-set $s^{-1}(0)$. Suppose that $s^{-1}(0) = \Sigma$ as oriented manifolds.

Explain why, if ∇ is a U(1)-connection in L, $i F(\nabla)$ may be regarded as an ordinary two-form (i.e. a section of Λ_X^2). Prove that $i F(\nabla)$ is closed, and that its cohomology class $[i F(\nabla)] \in H^2_{dR}(X)$ is independent of ∇ .

(b) Prove that there is some U(1)-connection ∇ in L such that $i F(\nabla)$ is a g-harmonic two-form, and that when $b_1(X) = 0$, ∇ is unique up to gauge transformations.

(c) Suppose $X = \overline{\mathbb{CP}}^2$ (i.e. the complex projective plane with the opposite orientation from the usual complex orientation). Show that every line bundle L admits a unique gauge-orbit of ASD connections.

(d) Suppose $X = S^2 \times S^2$. Show that there is a line bundle L which does not admit any ASD connections. [Consider $L \oplus L^*$.]

3

3 (a) Prove that a flat SU(2)-connection in the trivial bundle over an open square $(-1,1)^2$ is equivalent to the trivial connection.

(b) State a relation between flat connections over a manifold and representations of its fundamental group.

Let T be the punctured 2-torus, $(S^1 \times S^1) \setminus \{\text{point}\}$. Let $E \to T$ be the trivial SU(2)-bundle, \mathcal{G} its group of gauge transformations. Fix a point $x \in T$, and let

$$\mathcal{G}_x = \{ u \in \mathcal{G} : u(x) = 1 \}.$$

Let $\widetilde{M}(T)$ be the space of \mathcal{G}_x -orbits of flat SU(2)-connections in E. Explain how to identify $\widetilde{M}(T)$ with $S^3 \times S^3$.

(c) Let M(T) be the space of \mathcal{G} -orbits of flat SU(2)-connections in E. Show that M(T) has a dense open set U such that U is homeomorphic to $S^2 \times (0, 1)$ and $M(T) \setminus U$ is homeomorphic to $[0, 1] \cup [0, 1]$ (disjoint union).

SECTION B

4 (a) Let E denote the trivial SU(2)-bundle over S^3 , \mathcal{A}_E the space of SU(2)-connections. The *Chern-Simons functional*

$$\mathrm{CS}: \mathcal{A}_E \to \mathbb{R}/\mathbb{Z}$$

is defined as follows: let W be a compact oriented four-manifold with boundary $\partial W = S^3$, $E_W \to W$ an SU(2)-bundle extending $E \to S^3$. Then

$$\mathrm{CS}(\nabla) = \frac{1}{8\pi^2} \int_W \mathrm{Tr}\, F(\widetilde{\nabla})^2 \mod \mathbb{Z},$$

where $\widetilde{\nabla}$ is an SU(2)-connection in W extending W.

Explain briefly why the value of $CS(\nabla)$ is well-defined, independent of the choices of W, E_W and $\widetilde{\nabla}$. Show that

$$\left.\frac{d}{dt}\right|_{t=0} \mathrm{CS}(\nabla + ta) = \frac{1}{4\pi^2} \int_{S^3} \mathrm{Tr}\,(F(\nabla) \wedge a).$$

Show that if u is a gauge transformation of E which extends to a gauge transformation of E_W then

$$\mathrm{CS}(u \cdot \nabla) = \mathrm{CS}(\nabla).$$

(b) State and prove the Uhlenbeck-Donaldson compactness theorem for ASD connections in an SU(2)-bundle with Euler number 1 over a closed, oriented Riemannian four-manifold. [State any analytic results you use.]

Paper 22

[TURN OVER

4

5 In this question, X is a closed, oriented, simply connected, negative-definite fourmanifold, g a Riemannian metric on X, and ∇ a g-ASD connection in an SU(2)-bundle E over X.

(a) Write down the three-term elliptic complex associated with ∇ . Prove that it is a complex. (You do not need to prove that it is elliptic.) Write down a formula for the index of the associated elliptic operator.

(b) Suppose that ∇ is reducible, with holonomy group $S^1 \subset SU(2)$. What is the dimension of H^0_{∇} ? Justify your answer.

(c) State the Kuranishi model for the zero-set of a smooth map between Hilbert spaces which has Fredholm derivative.

Let M be the space of gauge-orbits of g-ASD connections. Suppose that ∇ has holonomy group S^1 and $H^2_{\nabla} = 0$. Show that there is an open neighbourhood of $[\nabla]$ in Mwhich is homeomorphic to a neighbourhood of [0] in

$$\mathbb{C}^d / S^1, \quad d = 4e(E) - 1,$$

where $\lambda \in S^1 \subset \mathbb{C}$ acts by scalar multiplication by λ^2 .

END OF PAPER