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1 Let L1 and L2 be compact C∞-submanifolds without boundary of a C∞-manifold
M . Assume that L1 and L2 intersect transversally in M . Assume in addition that normal
bundles ν(i1) and ν(i2) of embeddings ij : Lj ⊂ M are equipped with complex structures.
Triples [L1, i1, ν(i1)] and [L2, i2, ν(i2)] represent elements of the complex cobordism group
Ω∗∗U (M, ∅). Describe geometrically the product

[L1, i1, ν(i1)] ∗ [L2, i2, ν(i2)] ∈ Ω∗∗U (M, ∅)

and explain why it can be realised as a submanifold of M with a complex structure in the
normal bundle of embedding.

2 Prove that the groups of unitary transformations U(n) ⊂ Mat(n, C) of Cn and
orthogonal transformations O(n) ⊂ Mat(n, R) of Rn are C∞-manifolds.

Assuming that the space of cosets G/H of a Lie subgroup H of a Lie group G
is a C∞-manifold with G → G/H smooth of everywhere maximal rank, find the set of
homotopy equivalence classes of maps [O(2n)/U(n), Sn2

], where U(n) is considered as a
Lie subgroup of O(2n) under identification Cn ∼= R2n?

3 Give the definition of the Thom class of a vector bundle ξ in the multiplicative
cohomology theory h∗(·). Assume that a vector bundle ξ is oriented with respect to h∗(·)
and let us fix a Thom class uh(ξ) ∈ hdim ξ(D(ξ), S(ξ)). What is the Euler class eh(ξ)?
Show that if ξ admits a nowhere zero section then eh(ξ) = 0.

4 What is the Whitney sum formula for Chern classes in complex cobordism of a sum
η ⊕ ξ of two complex vector bundles?

Let CP (η) be a projectivisation of a complex vector bundle η over a base X,
dimC η = n. Define the one–dimensional tautological complex vector bundle η(1) over
CP (η).

Denote the projection CP (η) → X by p. Using Whitney sum formula express
Chern classes of an orthogonal complement η(1)⊥ to η(1) inside p∗η:

η(1)⊕ η(1)⊥ ≡C p∗η,

in terms of Chern class x = c1(η(1)) and pull–backs p∗(ck(η)) of Chern classes of η,
k = 1, . . . , n.

Prove that x = c1(η) satisfies

xn − p∗(c1(η)) · xn−1 + p∗(c2(η)) · xn−2 − · · ·+ (−1)np∗(cn(η)) = 0.
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5 Define the Thom space of a vector bundle. Let CPn ⊂ CPn+m+1 be an embedding
onto the first n + 1 coordinates of CPn+m+1 = {(z0 : z1 : · · · : zm+n+1}. Prove that

CPn+m+1/CPn

is homeomorphic to the Thom space Th

η1 ⊕ · · · ⊕ η1︸ ︷︷ ︸
n+1

 of the bundle η1 ⊕ · · · ⊕ η1︸ ︷︷ ︸
n+1

over

CPm, where η1 is the one-dimensional tautological complex vector bundle over CPm.

Let CP k, CPm ⊂ CPn be coordinate embeddings as above (k, m < n). Define
complex structures νk, νm in the normal bundles of these embedding by means of the
previous homeomorphism. Compute geometrically the product of two elements

[CP k, νk] ∈ Ω2(n−k)
U (CPn, ∅), [CPm, νm] ∈ Ω2(n−m)

U (CPn, ∅).

END OF PAPER
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