

MATHEMATICAL TRIPOS Part III

Wednesday 7 June, 2006 9 to 12

PAPER 20

SYMPLECTIC TOPOLOGY

Attempt **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Define the Lie derivative, and prove Cartan's formula. Deduce that the group of compactly supported symplectomorphisms of a connected symplectic manifold M acts transitively on points of M.

Let $S^2 \subset \mathbb{R}^3$ denote the unit sphere with its standard symplectic structure. Let $C = S^2 \cap \{z = 0\}$ and $C' = S^2 \cap \{z = \frac{1}{2}\}$ denote the circles given by intersecting the sphere with the given planes. Is there a symplectomorphism $\phi : S^2 \to S^2$ taking C to C'? Justify your answer.

2 State the symplectic neighbourhood theorem for symplectic submanifolds of a symplectic submanifold, and outline the proof using Moser's method.

Let C be a smooth surface of genus g. Prove that if symplectic 4-manifolds X and Y contain embedded symplectic submanifolds diffeomorphic to C and of self-intersection zero, then the fibre sum $X #_{C \sim C'} Y$ carries a natural symplectic structure.

Show by example that if $C \subset X$ and $C' \subset Y$ are only smoothly embedded square zero surfaces of the same genus, the fibre sum $X #_{C \sim C'} Y$ need not admit a symplectic structure.

3 What does it mean to blow up a symplectic manifold at a point $p \in X$? Prove that the blow-up of X at p carries a symplectic structure. Is this well-defined up to symplectomorphism?

State without proof a formula for the first Chern class of the blow-up.

Equip the four-torus T^4 with its standard symplectic structure. Show that a Lefschetz pencil of genus g curves on T^4 has exactly 2g - 2 base points.

4 What does it mean for an almost complex structure J to be compatible with a symplectic form? Prove that every symplectic manifold (M, ω) has a connected non-empty space of compatible almost complex structures.

What does it mean for a compatible J to be regular for a J-holomorphic map $u : \mathbb{P}^1 \to M$? Suppose $\{\partial_s u + J(u)\partial_t u = 0\}$ in local co-ordinates and let ξ be a tangent vector to u. By differentiating this expression with respect to ξ , show that if u is a constant map then the linearisation D_u is a direct sum of copies of the Dolbeault operator $\overline{\partial} : \Omega^{0,0}(\mathbb{P}^1) \to \Omega^{0,1}(\mathbb{P}^1)$. Deduce every J is regular for all curves u representing the zero homology class.

Now suppose J is regular and $\dim_{\mathbb{R}}(M) = 4$. State a theorem giving the dimension of the space of J-holomorphic spheres representing a class $A \in H_2(M; \mathbb{Z})$. Deduce that if $[A] \cdot [A] \leq -2$ the space of J-holomorphic spheres in class A is empty.

Paper 20

5 What is a symplectic capacity on a symplectic manifold (X, ω) ?

Assuming the existence of a symplectic capacity c, prove the rigidity theorem: Symp(X) is C^0 -closed in Diff(X), the group of all diffeomorphisms of X.

Now let c be a capacity on subsets of \mathbb{R}^{2n} . Let $U \subset \mathbb{R}^{2n}$ be an open non-empty bounded subset and $W \subset \mathbb{R}^{2n}$ a codimension 2 linear subspace. Write $U+W = \{u+w \mid u \in U, w \in W\}$. Prove $0 < c(U+W) < \infty$ if W^{\perp} is not isotropic. [Hint: to show finiteness, embed U+W in something standard.]

END OF PAPER