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1 Define the Lie derivative, and prove Cartan’s formula. Deduce that the group of
compactly supported symplectomorphisms of a connected symplectic manifold M acts
transitively on points of M .

Let S2 ⊂ R3 denote the unit sphere with its standard symplectic structure. Let
C = S2 ∩ {z = 0} and C ′ = S2 ∩ {z = 1

2} denote the circles given by intersecting the
sphere with the given planes. Is there a symplectomorphism φ : S2 → S2 taking C to C ′?
Justify your answer.

2 State the symplectic neighbourhood theorem for symplectic submanifolds of a
symplectic submanifold, and outline the proof using Moser’s method.

Let C be a smooth surface of genus g. Prove that if symplectic 4-manifolds X and
Y contain embedded symplectic submanifolds diffeomorphic to C and of self-intersection
zero, then the fibre sum X#C∼C′Y carries a natural symplectic structure.

Show by example that if C ⊂ X and C ′ ⊂ Y are only smoothly embedded square
zero surfaces of the same genus, the fibre sum X#C∼C′Y need not admit a symplectic
structure.

3 What does it mean to blow up a symplectic manifold at a point p ∈ X? Prove
that the blow-up of X at p carries a symplectic structure. Is this well-defined up to
symplectomorphism?

State without proof a formula for the first Chern class of the blow-up.

Equip the four-torus T 4 with its standard symplectic structure. Show that a
Lefschetz pencil of genus g curves on T 4 has exactly 2g − 2 base points.

4 What does it mean for an almost complex structure J to be compatible with a
symplectic form? Prove that every symplectic manifold (M,ω) has a connected non-empty
space of compatible almost complex structures.

What does it mean for a compatible J to be regular for a J-holomorphic map
u : P1 → M? Suppose {∂su + J(u)∂tu = 0} in local co-ordinates and let ξ be a tangent
vector to u. By differentiating this expression with respect to ξ, show that if u is a
constant map then the linearisation Du is a direct sum of copies of the Dolbeault operator
∂ : Ω0,0(P1) → Ω0,1(P1). Deduce every J is regular for all curves u representing the zero
homology class.

Now suppose J is regular and dimR(M) = 4. State a theorem giving the dimension
of the space of J-holomorphic spheres representing a class A ∈ H2(M ; Z). Deduce that if
[A] · [A] 6 −2 the space of J-holomorphic spheres in class A is empty.
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5 What is a symplectic capacity on a symplectic manifold (X, ω) ?

Assuming the existence of a symplectic capacity c, prove the rigidity theorem:
Symp(X) is C0-closed in Diff(X), the group of all diffeomorphisms of X.

Now let c be a capacity on subsets of R2n. Let U ⊂ R2n be an open non-empty
bounded subset and W ⊂ R2n a codimension 2 linear subspace. Write U+W = {u+w |u ∈
U, w ∈ W}. Prove 0 < c(U + W ) < ∞ if W⊥ is not isotropic. [Hint: to show finiteness,
embed U + W in something standard.]

END OF PAPER
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