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SECTION A

1 Let R be a left Noetherian ring. Suppose that M is a left R-module and let N
be a submodule of M . Show that M is Noetherian if and only if both N and M/N are
Noetherian. Deduce that any finitely generated left R-module is Noetherian.

What is a poly-(cyclic or finite) group? Show that the group algebra RG of any
poly-(cyclic or finite) group G is left Noetherian.

2 Define the Jacobson radical J of a ring R. Show that any proper right ideal of R is
contained in a maximal right ideal. State and prove Nakayama’s Lemma.

Let M be an Artinian right R-module and let f : M → M be an injective right
R-module homomorphism. By considering images of successive powers of f or otherwise,
show that f is surjective.

Suppose that R is semilocal, that is, R/J is right Artinian. Let V be a finitely
generated right R-module and let α : V → V be a right R-module homomorphism such
that

α−1(V J) ⊆ V J.

Using Nakayama’s Lemma or otherwise, show that α is surjective.

3 Let R be a ring. Define the terms essential right ideal and regular element.

What is the classical right ring of quotients of R? State Goldie’s Theorem.

Suppose that R is a semiprime right Noetherian ring. Show that if a right ideal
of R contains a regular element, then it is essential. Assuming that every essential right
ideal of R contains a regular element, prove that the classical right ring of quotients of R
exists and is semisimple Artinian.

[You may assume Ore’s Theorem, as well as results on Artinian rings.]
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SECTION B

4 What is a filtration on a ring R? Let (FnR)n∈Z be a filtration on R and let M
be a filtered right R-module. Explain briefly how grM becomes a right module for the
associated graded ring grR of R.

Let N be a submodule of M . Define the terms subspace filtration and quotient
filtration, and show that there exists a short exact sequence of right grR-modules

0 → gr N → gr M → gr (M/N) → 0.

Suppose that the filtration on R is complete and negative. Show that F−1R is
contained in the Jacobson radical of R. Assuming that grR is right Noetherian, show that
R is also right Noetherian.

5 Let R be a left Noetherian ring and let I be an ideal of R. Define the prime radical
N of R. What is a minimal prime over I? Show that there are only finitely many minimal
primes over I, and that I contains a finite product of some of them. Deduce that N is
nilpotent.

Suppose further that R is commutative and let M be a finitely generated R-module.
What is an associated prime of M? Show that M has only finitely many associated primes.

Show that every minimal prime of R occurs as an associated prime of R viewed as
a module over itself.

6 Let k be a field of characteristic zero, let R be an almost commutative k-algebra and
let M be a finitely generated left R-module. Define the dimension d(M) and multiplicity
m(M) of M , and explain briefly why these concepts are well-defined.

Suppose now that N is a submodule of M . Show that d(M) = max{d(N), d(M/N)}
and also that if d(N) = d(M/N), then m(M) = m(N) + m(M/N).

State and prove Bernstein’s inequality for finitely generated modules over the Weyl
algebra An(k), and use it to deduce that any finitely generated An(k)-module of dimension
n is Artinian.

[You may assume that the centre of An(k) is k.]
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