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1 Define what is meant by a prevariety being separated and by a variety being
complete. Show that any projective variety is necessarily both separated and complete.

2 Let φ : (Y,OY ) → (X,OX) be a morphism of varieties, let F be an OY -module,
and let G, H be OX -modules. Describe the constructions of

(i) the OX -module G ⊗OX
H,

(ii) the OX -module φ∗F , and

(iii) the OY -module φ∗H.

Given an affine variety V and a k[V ]-module M , describe the construction of the
associated quasi-coherent sheaf M̃ on V with M̃(V ) = M — you may omit the proof
that the sheaf conditions (A) and (B) hold. Assuming the fact that any quasi-coherent
sheaf on an affine variety is of this form, interpret the constructions (i), (ii), (iii) above
(in terms of modules over the appropriate rings) when the sheaves are quasi-coherent and
φ is a morphism of affine varieties.

If now φ : Y → X is a morphism of affine varieties and M is a module over k[X],
prove that φ∗φ

∗M̃ ∼= M̃ ⊗OX
φ∗OY .

[The construction of the sheafification of a presheaf, and its properties, may be
assumed throughout in this question, as may standard results from commutative algebra.]
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3 Quoting the elementary results on flabby sheaves that you need, describe briefly
the construction of sheaf cohomology on a topological space X, via a particular choice of
flabby resolutions. Deduce from your construction that, for F any flabby sheaf, the higher
cohomology Hi(X,F) = 0 for i > 0.

Suppose now that X is a variety and F an OX -module; we define a rational section
of F to be an equivalence class of pairs (U, s), where U is an open dense subset of X and
s ∈ F(U), under the equivalence relation ∼ defined by (U, s) ∼ (V, t) if there exists an
open dense subset W of X with W ⊂ U ∩ V and s|W = t|W . Show that the set Rat(F) of
rational sections of F forms a module over the ring of rational functions Rat(X). From
now on, we suppose that X is irreducible and F is locally free; show that, for any P ∈ X,
there is an inclusion map of the stalk FP into Rat(F).

Suppose further that X is an irreducible curve. We denote by R(F) the constant
sheaf on X corresponding to Rat(F), and define a sheaf P(F) on X by

Γ(U,P(F)) =
⊕
P∈U

Rat(F)/FP ,

with the obvious restriction maps. Justify the fact that that P(F) is a sheaf, and prove
that there is a short exact sequence of sheaves

0 → F → R(F) → P(F) → 0.

Find an example where the natural map

Rat(F) →
⊕
P∈X

Rat(F)/FP

is not surjective. What happens when X is affine? Justify your answers.
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4 Describe the construction of the invertible sheaves OPn(m) on Pn (where m ∈ Z).
Letting π : An+1\{0} → Pn denote the standard map, and U denote an open subset of Pn,
show that the non-zero elements of Γ(U,OPn(m)) may be identified as quotients of coprime
homogeneous polynomials in X0, X1, . . . , Xn, say F/G, with G 6= 0 and degF−degG = m,
such that F/G defines a regular function on π−1(U).

Consider now the sheaf of regular 1-forms Ω1
Pn . Suppose that f = P/Q is a rational

function given as the quotient of homogeneous polynomials of the same degree, with Q 6= 0,
which is regular on an open set U . Show that, for each 0 ≤ i ≤ n, there is a well-defined
element ∂f/∂Xi of Γ(U,OPn(−1)). Deduce the existence of a sequence of morphisms

0 → Ω1
Pn →

n⊕
i=0

OPn(−1) → OPn → 0,

where the second of the unknown maps is defined by the recipe (suitably interpreted)

(g0, g1, . . . , gn) 7→
n∑

i=0

Xi gi.

By reducing down to affine pieces, show that the sequence is a short exact sequence.

Quoting appropriate results concerning the dimension of Hi(Pn,OPn(m)), find the
dimension of Hi(Pn,Ω1

Pn) for all 0 ≤ i ≤ n.
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