

MATHEMATICAL TRIPOS Part III

Friday 2 June, 2006 1.30 to 4.30

PAPER 17

ALGEBRAIC GEOMETRY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Define what is meant by a prevariety being *separated* and by a variety being *complete*. Show that any projective variety is necessarily both separated and complete.

2 Let $\phi : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ be a morphism of varieties, let \mathcal{F} be an \mathcal{O}_Y -module, and let \mathcal{G}, \mathcal{H} be \mathcal{O}_X -modules. Describe the constructions of

- (i) the \mathcal{O}_X -module $\mathcal{G} \otimes_{\mathcal{O}_X} \mathcal{H}$,
- (ii) the \mathcal{O}_X -module $\phi_*\mathcal{F}$, and
- (iii) the \mathcal{O}_Y -module $\phi^* \mathcal{H}$.

Given an affine variety V and a k[V]-module M, describe the construction of the associated quasi-coherent sheaf \tilde{M} on V with $\tilde{M}(V) = M$ — you may omit the proof that the sheaf conditions (A) and (B) hold. Assuming the fact that any quasi-coherent sheaf on an affine variety is of this form, interpret the constructions (i), (ii), (iii) above (in terms of modules over the appropriate rings) when the sheaves are quasi-coherent and ϕ is a morphism of affine varieties.

If now $\phi: Y \to X$ is a morphism of affine varieties and M is a module over k[X], prove that $\phi_* \phi^* \tilde{M} \cong \tilde{M} \otimes_{\mathcal{O}_X} \phi_* \mathcal{O}_Y$.

[The construction of the sheafification of a presheaf, and its properties, may be assumed throughout in this question, as may standard results from commutative algebra.]

Paper 17

3

3 Quoting the elementary results on flabby sheaves that you need, describe briefly the construction of sheaf cohomology on a topological space X, via a particular choice of flabby resolutions. Deduce from your construction that, for \mathcal{F} any flabby sheaf, the higher cohomology $H^i(X, \mathcal{F}) = 0$ for i > 0.

Suppose now that X is a variety and \mathcal{F} an \mathcal{O}_X -module; we define a rational section of \mathcal{F} to be an equivalence class of pairs (U, s), where U is an open dense subset of X and $s \in \mathcal{F}(U)$, under the equivalence relation \sim defined by $(U, s) \sim (V, t)$ if there exists an open dense subset W of X with $W \subset U \cap V$ and $s|_W = t|_W$. Show that the set $\operatorname{Rat}(\mathcal{F})$ of rational sections of \mathcal{F} forms a module over the ring of rational functions $\operatorname{Rat}(X)$. From now on, we suppose that X is irreducible and \mathcal{F} is locally free; show that, for any $P \in X$, there is an inclusion map of the stalk \mathcal{F}_P into $\operatorname{Rat}(\mathcal{F})$.

Suppose further that X is an irreducible *curve*. We denote by $\mathcal{R}(\mathcal{F})$ the constant sheaf on X corresponding to $\operatorname{Rat}(\mathcal{F})$, and define a sheaf $\mathcal{P}(\mathcal{F})$ on X by

$$\Gamma(U, \mathcal{P}(\mathcal{F})) = \bigoplus_{P \in U} \operatorname{Rat}(\mathcal{F})/\mathcal{F}_P$$
,

with the obvious restriction maps. Justify the fact that that $\mathcal{P}(\mathcal{F})$ is a sheaf, and prove that there is a short exact sequence of sheaves

$$0 \to \mathcal{F} \to \mathcal{R}(\mathcal{F}) \to \mathcal{P}(\mathcal{F}) \to 0.$$

Find an example where the natural map

$$\operatorname{Rat}(\mathcal{F}) \to \bigoplus_{P \in X} \operatorname{Rat}(\mathcal{F})/\mathcal{F}_P$$

is not surjective. What happens when X is affine? Justify your answers.

Paper 17

4 Describe the construction of the invertible sheaves $\mathcal{O}_{\mathbf{P}^n}(m)$ on \mathbf{P}^n (where $m \in \mathbf{Z}$). Letting $\pi : \mathbf{A}^{n+1} \setminus \{0\} \to \mathbf{P}^n$ denote the standard map, and U denote an open subset of \mathbf{P}^n , show that the non-zero elements of $\Gamma(U, \mathcal{O}_{\mathbf{P}^n}(m))$ may be identified as quotients of coprime homogeneous polynomials in X_0, X_1, \ldots, X_n , say F/G, with $G \neq 0$ and $\deg F - \deg G = m$, such that F/G defines a regular function on $\pi^{-1}(U)$.

Consider now the sheaf of regular 1-forms $\Omega^1_{\mathbf{P}^n}$. Suppose that f = P/Q is a rational function given as the quotient of homogeneous polynomials of the same degree, with $Q \neq 0$, which is regular on an open set U. Show that, for each $0 \leq i \leq n$, there is a well-defined element $\partial f/\partial X_i$ of $\Gamma(U, \mathcal{O}_{\mathbf{P}^n}(-1))$. Deduce the existence of a sequence of morphisms

$$0 \to \Omega^{1}_{\mathbf{P}^{n}} \to \bigoplus_{i=0}^{n} \mathcal{O}_{\mathbf{P}^{n}}(-1) \to \mathcal{O}_{\mathbf{P}^{n}} \to 0,$$

where the second of the unknown maps is defined by the recipe (suitably interpreted)

$$(g_0, g_1, \ldots, g_n) \mapsto \sum_{i=0}^n X_i g_i.$$

By reducing down to affine pieces, show that the sequence is a short exact sequence.

Quoting appropriate results concerning the dimension of $H^i(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(m))$, find the dimension of $H^i(\mathbf{P}^n, \Omega^1_{\mathbf{P}^n})$ for all $0 \le i \le n$.

END OF PAPER

Paper 17