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1 Let (M, g) be an n-dimensional smooth Riemannian manifold with n ≥ 2. Let
N ⊂M be a 2-dimensional submanifold given by the image of a smooth map

φ : (−δ, δ)× (−ε, ε)→M,

such that
t 7→ φ(t, s)

is a geodesic for all s ∈ (−ε, ε). Denoting this curve as γs : (−δ, δ) → M , derive the
equation for the second variation of the length of γs, i.e. derive an equation for d2

ds2 L(γs)
involving curvature. Deduce that the Gauss curvature of N at any p ∈ N (N is given
the induced metric from M) is less than or equal to the sectional curvature of M at p
evaluated for the 2-plane in TpM that is tangent to N . Show by explicit example that
equality need not hold.

2 Let (M, g), (N,h) denote connected smooth Riemannian manifolds. Define the
notion of isometry and local isometry. Suppose φt is a one-parameter family of local
transformations of (M, g) which are local isometries. Let K denote the vector field
generating φt. Show that K satisfies the Killing equation:

g(∇XK, Y ) + g(∇Y K, X) = 0

for all vector fields X, Y . Vector fields satisfying the Killing equation for all vector fields
X, Y are known as Killing fields. Conversely, show that a Killing field K generates a
1-parameter family of local isometries.

For vector fields X, Y and Z, define ∇2
X,Y Z = ∇X(∇Y Z) − ∇∇XY Z. Show that

for K a Killing field, we have

g(∇2
X,Y K, Z) + g(∇2

X,ZK, Y ) = 0.

Now show that
∇2

X,Y K = R(K, X)Y,

where R denotes the Riemann tensor. [Hint: What is ∇2
X,Y Z − ∇2

Y,XZ?] Finally,
deduce from the above or otherwise that if K and K̃ are Killing and K(p) = K̃(p),
∇zK(p) = ∇zK̃(p) for some point p ∈M , and all z ∈ TpM , then K = K̃ identically.
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3 Let (M, g) be a smooth connected Riemannian manifold. A geodesically convex
neighorhood U of a point p is a neighborhood for which there exists an ε > 0 such that
all points in U can be joined by a unique length minimizing geodesic of length less than
or equal to ε, contained completely in U . Recall that around each point p, there exists a
geodesically convex neighborhood U .

Define the induced metric space structure of M and show that it indeed defines a
metric space. Define the notion of geodesic completeness. Prove the Hopf-Rinow theorem:
M is geodesically complete if and only if M is complete as a metric space. Prove that the
real hyperbolic 2-plane H2 is geodesically complete.

4 Let (M, g) be an n-dimensional smooth connected Riemannian manifold with n ≥ 2,
and let γ : [0, L] → M be a geodesic parametrized by arc length. Let V denote the set
of piecewise smooth vector fields along γ which vanish at γ(0) and γ(L), and which are
perpendicular to γ.

State the definition of the index form I : V×V→ R. State the definition of Jacobi
field and conjugate point. Give without proof a characterization of when I is positive
definite and strictly positive definite in terms of conjugate points.

Now, let (M, g) satisfy Ric(v, v) ≥ (n− 1)κg(v, v) for some constant κ > 0 and all
vectors v. If L > π/

√
κ, show that there exists a V ∈ V with I(V, V ) < 0. Deduce that

if in addition M is assumed to be complete, then diam(M) ≤ π/
√

κ. Show by explicit
example that the above inequality may be violated if M is not complete.
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