

## MATHEMATICAL TRIPOS Part III

Thursday 1 June, 2006 9 to 12

## PAPER 15

## DIFFERENTIAL GEOMETRY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.  $\mathbf{2}$ 

**1** Let (M,g) be an *n*-dimensional smooth Riemannian manifold with  $n \ge 2$ . Let  $N \subset M$  be a 2-dimensional submanifold given by the image of a smooth map

$$\phi: (-\delta, \delta) \times (-\epsilon, \epsilon) \to M,$$

such that

$$t \mapsto \phi(t,s)$$

is a geodesic for all  $s \in (-\epsilon, \epsilon)$ . Denoting this curve as  $\gamma_s : (-\delta, \delta) \to M$ , derive the equation for the second variation of the length of  $\gamma_s$ , i.e. derive an equation for  $\frac{d^2}{ds^2}L(\gamma_s)$  involving curvature. Deduce that the Gauss curvature of N at any  $p \in N$  (N is given the induced metric from M) is less than or equal to the sectional curvature of M at p evaluated for the 2-plane in  $T_pM$  that is tangent to N. Show by explicit example that equality need not hold.

**2** Let (M,g), (N,h) denote connected smooth Riemannian manifolds. Define the notion of *isometry* and *local isometry*. Suppose  $\phi_t$  is a one-parameter family of local transformations of (M,g) which are local isometries. Let K denote the vector field generating  $\phi_t$ . Show that K satisfies the Killing equation:

$$g(\nabla_X K, Y) + g(\nabla_Y K, X) = 0$$

for all vector fields X, Y. Vector fields satisfying the Killing equation for all vector fields X, Y are known as *Killing fields*. Conversely, show that a Killing field K generates a 1-parameter family of local isometries.

For vector fields X, Y and Z, define  $\nabla_{X,Y}^2 Z = \nabla_X (\nabla_Y Z) - \nabla_{\nabla_X Y} Z$ . Show that for K a Killing field, we have

$$g(\nabla_{X,Y}^2 K, Z) + g(\nabla_{X,Z}^2 K, Y) = 0.$$

Now show that

$$\nabla^2_{X,Y}K = R(K,X)Y,$$

where R denotes the Riemann tensor. [*Hint: What is*  $\nabla^2_{X,Y}Z - \nabla^2_{Y,X}Z$ ?] Finally, deduce from the above or otherwise that if K and  $\tilde{K}$  are Killing and  $K(p) = \tilde{K}(p)$ ,  $\nabla_z K(p) = \nabla_z \tilde{K}(p)$  for some point  $p \in M$ , and all  $z \in T_p M$ , then  $K = \tilde{K}$  identically.

Paper 15

**3** Let (M,g) be a smooth connected Riemannian manifold. A geodesically convex neighborhood U of a point p is a neighborhood for which there exists an  $\epsilon > 0$  such that all points in U can be joined by a unique length minimizing geodesic of length less than or equal to  $\epsilon$ , contained completely in U. Recall that around each point p, there exists a geodesically convex neighborhood U.

Define the induced metric space structure of M and show that it indeed defines a metric space. Define the notion of *geodesic completeness*. Prove the Hopf-Rinow theorem: M is geodesically complete if and only if M is complete as a metric space. Prove that the real hyperbolic 2-plane  $\mathbb{H}^2$  is geodesically complete.

4 Let (M, g) be an *n*-dimensional smooth connected Riemannian manifold with  $n \geq 2$ , and let  $\gamma : [0, L] \to M$  be a geodesic parametrized by arc length. Let **V** denote the set of piecewise smooth vector fields along  $\gamma$  which vanish at  $\gamma(0)$  and  $\gamma(L)$ , and which are perpendicular to  $\gamma$ .

State the definition of the *index form*  $I : \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ . State the definition of *Jacobi field* and *conjugate point*. Give without proof a characterization of when I is positive definite and strictly positive definite in terms of conjugate points.

Now, let (M, g) satisfy  $Ric(v, v) \ge (n-1)\kappa g(v, v)$  for some constant  $\kappa > 0$  and all vectors v. If  $L > \pi/\sqrt{\kappa}$ , show that there exists a  $V \in \mathbf{V}$  with I(V, V) < 0. Deduce that if in addition M is assumed to be complete, then  $diam(M) \le \pi/\sqrt{\kappa}$ . Show by explicit example that the above inequality may be violated if M is not complete.

## END OF PAPER