

### MATHEMATICAL TRIPOS Part III

Wednesday 7 June, 2006 9 to 11

## PAPER 14

## PROBABILISTIC COMBINATORICS

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# CAMBRIDGE

2

**1** Suppose that G = G(n, p) is a random graph and let  $\mu$  be its expected chromatic number. Prove that

$$\mathbb{P}(|\chi(G) - \mu| > \lambda \sqrt{n}) < 2e^{-\lambda^2/2}.$$

Now suppose that p is such that

$$\mathbb{P}(\chi(G) < n/\log n) > 1/10.$$

Prove that  $\chi(G) < n/\log n + \log n\sqrt{n}$  with high probability.

[You may assume basic results about conditional expectation, and that the vertex exposure martingale corresponding to the chromatic number is Lipschitz with constant 1. However, you should prove the Azuma-Hoeffding Inequality if you use it.]

2 Show that there exists a 3-uniform hypergraph H with the following properties:

- 1. H has chromatic number at least 2006.
- 2. H does not contain two edges sharing two vertices.

[You may assume any standard results if clearly stated.]

**3** Prove that every *r*-uniform hypergraph with less than  $2^{r-1}$  edges can be twocoloured. Further prove that there exists an *r*-uniform hypergraph with  $O(r^2 2^r)$  edges that is not two-colourable.

4 Suppose that G = G(n, p) where  $p = (\log n + c)/n$  and c is a constant. State with proof the limiting probability that

- a. there exists a vertex of degree zero;
- b. there are exactly two vertices of degree zero;
- c. the graph is connected.

Let X be the number of vertices of degree one in G. By showing that  $\operatorname{Var}(X)/(\mathbb{E}X)^2 \to 0$ or otherwise show that there is a vertex of degree one with high probability.

[Any standard results about convergence in distribution may be assumed if they are clearly stated. You may also assume that, with high probability, there is no component of size between  $\log \log n$  and n/2.]

3

**5** State the general form of the Lovász Local Lemma and deduce the symmetric form from it.

Suppose that H is an r-uniform hypergraph on a (finite) vertex set V and that the maximum degree of H is  $\Delta$ . Prove that H is two-colourable provided that  $\Delta < 2^r/(2re)-1$ .

Now consider a random two colouring of the vertices of H where each vertex is coloured red or blue independently with probability one half.

- i) Fix an edge W of H. Prove that the probability that W contains more than  $\frac{3}{4}r$  red points is less than  $e^{-r/8}$ .
- ii) Prove that, provided  $\Delta < e^{r/8}/(2re) 1$ , there is a two-colouring of V such that no edge of H contains more than  $\frac{3}{4}r$  points of either colour.

[You may assume any tail estimates if clearly stated.]

**6** Suppose that A and B are up-sets in  $\{0, 1\}^n$  and that  $Z_1, Z_2, \ldots, Z_n$  are independent Bernoulli random variables with  $\mathbb{P}(Z_i = 1) = p_i$ . Let  $Z = (Z_1, Z_2, \ldots, Z_n)$ . Show that

$$\mathbb{P}(Z \in A \cap B) \ge \mathbb{P}(Z \in A)\mathbb{P}(Z \in B)$$

and

$$\mathbb{P}(Z \in A \Box B) \le \mathbb{P}(Z \in A) \mathbb{P}(Z \in B).$$

Suppose that G = G(n, p), that U, W are disjoint subsets of vertices and that x is a vertex not in U or W. Further suppose that the probability that G contains a path from x to U is  $\alpha$  and from x to W is  $\beta$ . Prove that the probability that there is a path from U to W through x is at most  $\alpha\beta$  but that the probability that there is a path from U to W is at least  $\alpha\beta$ .

### END OF PAPER

Paper 14