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(i) State and prove the Local LYM inequality, and deduce the LYM inequality. Which
antichains in P([n]) have size exactly

(
n

bn/2c
)
?

(ii) A symmetric chain in P([n]) is a chain A1 ⊂ . . . ⊂ Ak (k > 1) such that
|Ai+1| = |Ai|+ 1 for each 1 6 i 6 k − 1 and also |A1|+ |Ak| = n. Prove that P([n]) may
be partitioned into symmetric chains. [Hint: induction on n.]

2 State the vertex-isoperimetric inequality in the discrete cube (Harper’s theorem).
Explain carefully how the Kruskal-Katona theorem may be deduced from Harper’s
theorem.

State the Erdős-Ko-Rado theorem, and give two proofs: one using the Kruskal-
Katona theorem and one using cyclic orderings.

Which of the following are always true, for every n and every r 6 n/2, and which
can be false? Give proofs or counterexamples as appropriate.

(i) If A ⊂ [n](r) is an intersecting family then the initial segment of the lexicographic
order on [n](r) of size |A| is also intersecting.

(ii) If A ⊂ [n](r) is an intersecting family then the initial segment of the colexicographic
order on [n](r) of size |A| is also intersecting.

(iii) If A ⊂ [n](r) is a 2-intersecting family then the initial segment of the lexicographic
order on [n](r) of size |A| is also 2-intersecting.

3 State and prove the edge-isoperimetric inequality in the discrete cube (the theorem
of Harper, Lindsey, Bernstein and Hart).

Deduce that the isoperimetric number of the discrete cube is 1.

Which subsets of size 2n−1 of the discrete cube Qn have edge-boundary of size
exactly 2n−1? Justify your answer.

4 State and prove the Frankl-Wilson theorem (on modular intersections).

Let p be prime. Using the Frankl-Wilson theorem, show that if A ⊂ [4p](2p) satisfies
|x ∩ y| 6= p for all x, y ∈ A then |A| 6 2

(
4p

p−1

)
.

Explain the Kahn-Kalai counterexample to Borsuk’s conjecture.

Give, with justification, an explicit n such that Borsuk’s conjecture is false in
dimension n.
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