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1 (a) Prove that every normalized basic sequence has a subsequence that generates a
spreading model. [You may use Ramsey’s Theorem without proof if you state it clearly.]

(b) Show that a spreading model generated by a normalized weakly null basic
sequence is 1-suppression-unconditional.

(c) Explain briefly why every infinite-dimensional Banach space has an uncondi-
tional spreading model.

2 (a) Define hereditarily indecomposable Banach spaces.

(b) Let T :X → X be a bounded, linear map on a hereditarily indecomposable
Banach space X. Assume that for every finite-codimensional subspace Y of X and ε > 0
there exists y ∈ Y, ||y|| = 1 such that ||T (y)|| < ε. Explain briefly (without proof) how
to construct, for given εi > 0 (i ∈ N), a normalized basic sequence (ei) in X such that
||T (ei)|| < εi for all i ∈ N. Deduce that T is strictly singular, i.e. for every infinite-
dimensional subspace Y of X and ε > 0 there exists y ∈ Y, ||y|| = 1 such that ||T (y)|| < ε.

(c) State and prove Gowers’ Dichotomy Theorem. [You may use Gowers’ Ramsey
Theorem for Banach spaces without proof if you state it clearly. You may assume standard
results about bases.]

3 State and prove Rosenthal’s `1-theorem. [You may use results from infinite Ramsey
theory without proof if you state them clearly.]

4 (a) Show that a well-founded, closed tree in a Polish space has countable height.

(b) Define Bourgain’s `1-index and use it to show that there is no separable, reflexive
space that is universal for the class of all separable, reflexive spaces.

5 Let X be a Banach space with a basis and with norm || · ||. Let us say that X has
bounded distortions if there exists D > 0 such that for every block subspace Y of X and
for every equivalent norm ||| · ||| on Y there is a block subspace Z of Y on which || · || and
||| · ||| are D-equivalent.

Show that a space with bounded distortions contains an unconditional basic
sequence. [You may use the result that a well-founded, closed tree in a Polish space has
countable height.]
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6 (a) Define Ramsey subsets of N(ω). Show that every open subset of N(ω) (in the
product topology) is Ramsey.

(b) Let (xi) be a normalized, weakly null sequence in a Banach space X. Let
x∗: N(ω) → BX∗ , M 7→ x∗

M be a continuous map, where the unit ball BX∗ of X∗ is given
the weak∗-topology. Let δ > 0. Show that there exists L ∈ N(ω) such that for all M ∈ L(ω)

we have |x∗
M ′(xm)| < δ, where m = minM and M ′ = M \ {m}.

END OF PAPER
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