

MATHEMATICAL TRIPOS Part III

Tuesday 6 June, 2006 9 to 12

PAPER 11

TOPICS IN BANACH SPACES

Attempt **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 (a) Prove that every normalized basic sequence has a subsequence that generates a spreading model. [You may use Ramsey's Theorem without proof if you state it clearly.]

(b) Show that a spreading model generated by a normalized weakly null basic sequence is 1-suppression-unconditional.

(c) Explain briefly why every infinite-dimensional Banach space has an unconditional spreading model.

2 (a) Define hereditarily indecomposable Banach spaces.

(b) Let $T: X \to X$ be a bounded, linear map on a hereditarily indecomposable Banach space X. Assume that for every finite-codimensional subspace Y of X and $\varepsilon > 0$ there exists $y \in Y$, ||y|| = 1 such that $||T(y)|| < \varepsilon$. Explain briefly (without proof) how to construct, for given $\varepsilon_i > 0$ ($i \in \mathbb{N}$), a normalized basic sequence (e_i) in X such that $||T(e_i)|| < \varepsilon_i$ for all $i \in \mathbb{N}$. Deduce that T is strictly singular, i.e. for every infinitedimensional subspace Y of X and $\varepsilon > 0$ there exists $y \in Y$, ||y|| = 1 such that $||T(y)|| < \varepsilon$.

(c) State and prove Gowers' Dichotomy Theorem. [You may use Gowers' Ramsey Theorem for Banach spaces without proof if you state it clearly. You may assume standard results about bases.]

3 State and prove Rosenthal's ℓ_1 -theorem. [You may use results from infinite Ramsey theory without proof if you state them clearly.]

4 (a) Show that a well-founded, closed tree in a Polish space has countable height.

(b) Define Bourgain's ℓ_1 -index and use it to show that there is no separable, reflexive space that is universal for the class of all separable, reflexive spaces.

5 Let X be a Banach space with a basis and with norm $|| \cdot ||$. Let us say that X has bounded distortions if there exists D > 0 such that for every block subspace Y of X and for every equivalent norm $||| \cdot |||$ on Y there is a block subspace Z of Y on which $|| \cdot ||$ and $||| \cdot |||$ are D-equivalent.

Show that a space with bounded distortions contains an unconditional basic sequence. [You may use the result that a well-founded, closed tree in a Polish space has countable height.]

3

6 (a) Define Ramsey subsets of $\mathbb{N}^{(\omega)}$. Show that every open subset of $\mathbb{N}^{(\omega)}$ (in the product topology) is Ramsey.

(b) Let (x_i) be a normalized, weakly null sequence in a Banach space X. Let $x^*: \mathbb{N}^{(\omega)} \to B_{X^*}, \ M \mapsto x_M^*$ be a continuous map, where the unit ball B_{X^*} of X^* is given the weak*-topology. Let $\delta > 0$. Show that there exists $L \in \mathbb{N}^{(\omega)}$ such that for all $M \in L^{(\omega)}$ we have $|x_{M'}^*(x_m)| < \delta$, where $m = \min M$ and $M' = M \setminus \{m\}$.

END OF PAPER

Paper 11