

MATHEMATICAL TRIPOS Part III

Friday 3 June, 2005 1.30 to 4.30

PAPER 85

NOETHERIAN ALGEBRAS

Attempt **TWO** questions from each section. There are **THREE** questions in each section. All questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

SECTION A

1 Let R be a ring. Show that the intersection J of all maximal left ideals of R is equal to the intersection of all maximal right ideals.

Show that J contains every nilpotent ideal of R.

Compute J in the case when R is the power series ring $\mathbb{Z}_p[[t]]$, where \mathbb{Z}_p is the ring of p-adic integers. Briefly justify your answer.

2 Let R be a right Noetherian ring. Show that R[t] is also right Noetherian.

Now let k be a field and let R be an almost commutative k-algebra.

- (a) Show that there exists a finite dimensional k-Lie algebra \mathfrak{g} such that R is a quotient of $\mathcal{U}(\mathfrak{g})$.
- (b) Show that R is right and left Noetherian.

3 Let R be a ring, S a multiplicatively closed subset of R containing 1. What is a right localisation of R at S? State necessary and sufficient conditions for the right localisation of R at S to exist, and prove their necessity.

Prove that if R is a right Noetherian domain, then a right localisation of R at $S=R\backslash\{0\}$ exists.

State Goldie's Theorem and use it to deduce that any prime right Noetherian ring has a right classical ring of quotients of the form $M_n(D)$ for some division ring D.

Give an example of a ring which has a right classical ring of quotients, but which is not right Noetherian.

3

SECTION B

- 4 Let R be a right Artinian ring and let J = J(R).
 - (a) Show that if J = 0 then R_R is semisimple.
 - (b) Show that J is nilpotent.
 - (c) Explain briefly how these results can be used to show that R is right Noetherian.

Give an example of a right Artinian ring which is not left Noetherian. Justify your answer.

5 Let R be a commutative ring. Show that R is semiprime if and only if R has no nonzero nilpotent elements.

Suppose further that R is Noetherian. For any prime ideal P of R, show that the localisation R_P is a Noetherian local ring.

Suppose R is such that R_Q is semiprime for all prime ideals Q of R. Show that R is also semiprime. Is this statement true when "semiprime" is replaced with "prime"? Give a proof or a counterexample.

6 Let k be a field and let $R = A_n(k)$ be the n-th Weyl algebra, $n \ge 1$. Show that the following are equivalent:

- (a) R is a simple ring,
- (b) R has no nonzero modules which are finite dimensional over k,
- (c) char(k) = 0.

State and prove Bernstein's inequality concerning modules for $A_n(k)$.

END OF PAPER