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SECTION A

1 Let R be a ring. Show that the intersection J of all maximal left ideals of R is
equal to the intersection of all maximal right ideals.

Show that J contains every nilpotent ideal of R.

Compute J in the case when R is the power series ring Zp[[t]], where Zp is the ring
of p−adic integers. Briefly justify your answer.

2 Let R be a right Noetherian ring. Show that R[t] is also right Noetherian.

Now let k be a field and let R be an almost commutative k−algebra.

(a) Show that there exists a finite dimensional k−Lie algebra g such that R is a quotient
of U(g).

(b) Show that R is right and left Noetherian.

3 Let R be a ring, S a multiplicatively closed subset of R containing 1. What is a right
localisation of R at S? State necessary and sufficient conditions for the right localisation
of R at S to exist, and prove their necessity.

Prove that if R is a right Noetherian domain, then a right localisation of R at
S = R\{0} exists.

State Goldie’s Theorem and use it to deduce that any prime right Noetherian ring
has a right classical ring of quotients of the form Mn(D) for some division ring D.

Give an example of a ring which has a right classical ring of quotients, but which
is not right Noetherian.
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SECTION B

4 Let R be a right Artinian ring and let J = J(R).

(a) Show that if J = 0 then RR is semisimple.

(b) Show that J is nilpotent.

(c) Explain briefly how these results can be used to show that R is right Noetherian.

Give an example of a right Artinian ring which is not left Noetherian. Justify your
answer.

5 Let R be a commutative ring. Show that R is semiprime if and only if R has no
nonzero nilpotent elements.

Suppose further that R is Noetherian. For any prime ideal P of R, show that the
localisation RP is a Noetherian local ring.

Suppose R is such that RQ is semiprime for all prime ideals Q of R. Show that
R is also semiprime. Is this statement true when ”semiprime” is replaced with ”prime”?
Give a proof or a counterexample.

6 Let k be a field and let R = An(k) be the n−th Weyl algebra, n > 1. Show that
the following are equivalent:

(a) R is a simple ring,

(b) R has no nonzero modules which are finite dimensional over k,

(c) char(k) = 0.

State and prove Bernstein’s inequality concerning modules for An(k).
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