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The Papkovich–Neuber representation of Stokes flow is

u = ∇(x · Φ + χ)− 2Φ, p = 2µ∇ ·Φ, where ∇2χ = 0 and ∇2Φ = 0.

1 Let u be a Stokes flow (with no body force) in a region V with bounding surface
∂V and outward normal n. Given that the local rate of viscous dissipation is σ : e, where
σ is the stress tensor and e the strain-rate tensor, show that the total dissipation is given
by

D =
∫

∂V

u · σ · n dS.

Let u0 be the Stokes flow in V0 due to a specified velocity U0(x) on ∂V0, and let
u0 + u′ be the Stokes flow, with stress tensor σ0 + σ′, produced by adding a rigid, force-
free, couple-free particle to the flow while maintaining the velocity equal to U0(x) on ∂V0.
Show that the increase D′ in dissipation due to the presence of the particle is given by

D′ =
∫

∂V0

U0 · σ′ · n dS

and, using the Reciprocal Theorem or otherwise, show further that

D′ =
∫

A

(u0 · σ′ − u′ · σ0) · (−n) dS,

where A is the surface of the particle and −n is its outward normal.

A force-free couple-free rigid sphere of radius a is placed at the origin in an
unbounded strain flow with uniform strain rate E. Find the perturbation to the flow
arising from the presence of the sphere. Given that the total stress on the surface of the
sphere is

σ0 + σ′ = 5µ
{
(n · E · n)(I− 2nn) + (E · n)n + n(E · n)

}
,

calculate the increase in dissipation due to the presence of the sphere.

[You may assume that the difference between the unbounded situation and the case
U0 = E · x on r = R, where R � a, is negligible near the sphere.]

A volume fraction φ of such spheres is now distributed throughout the straining
flow, where φ � 1 so that interaction between the spheres can be neglected. Calculate
the number of spheres per unit volume and deduce that the average increase in dissipation
per unit volume is such that the fluid appears to have an effective viscosity

µeff = µ(1 + 5
2φ).
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2 (a) Using Papkovich–Neuber potentials χ and Φ = (0, φ), find the two-dimensional
Stokes flow u = (u, v) in the half-space y > 0 that satisfies u → 0 as y → ∞
and u = (Ueikx, 0) on y = 0, where U and k are positive constants. Show that
σxy = −2µkUeikx and σyy = 0 on y = 0.

[In Part (b) you may assume that a similar calculation for u = (0, V eikx) on y = 0 gives
σxy = 0 and σyy = −2µkV eikx.]

(b) A thin layer of fluid of viscosity µ and density ρ in −h(x, t) < z < h(x, t) is
sandwiched between semi-infinite layers of fluid of viscosity λµ and density ρ−∆ρ in z > h
and of viscosity λµ and density ρ + ∆ρ in z < −h. The z-direction is vertical, surface
tension and inertia are negligible, and you may assume that the symmetry about z = 0 is
maintained as the layer relaxes towards a uniform thickness under gravity.

Consider long-wavelength variations (|∂h/∂x| � 1), and suppose that λ is suffi-
ciently small that the horizontal velocity u in the layer is approximately uniform (|∇u| �
u/h). Starting from u = u(x, t), use the vertical stress balance and the horizontal force
balance to derive the equation for extensional flow in the layer,

4µ
∂

∂x

(
h

∂u

∂x

)
= h

∂

∂x
(∆ρ gh− σ+

zz)− σ+
xz,

where σ+ is the modified stress in the fluid just above z = h. Write down the corresponding
equation of conservation of mass for the layer.

Consider small perturbations to a uniform thickness h = h0 with amplitude
proportional to exp(ikx − st), where κ ≡ kh0 � 1. Assume that σ+

zz is negligible and
that σ+

xz is given by the analysis in Part (a) with y = z − h and viscosity λµ. Show from
the linearised equations that

s =
∆ρ gh0

2µ

κ

λ + 2κ
.

Describe the dominant source of viscous resistance in each of the cases λ � κ and κ � λ.

(c) A lengthy calculation using the unapproximated Stokes equations in all three
layers shows that the linearised decay rate is given for arbitrary λ by

s =
∆ρ gh0

2µ

κ + 2
3λκ2 + O(κ3, λκ4)
λ + 2κ + O(κ3)

,

when κ � 1. Find the leading-order behaviour of s when λ � κ−1 � 1, and suggest the
dominant source of viscous resistance in this case.
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3 A rigid cylindrical tube, radius a, contains fluid of viscosity µ and a force-free,
couple-free rigid sphere with radius b and centre at distance c (with b + c < a) from the
axis of the tube. Far ahead of and behind the sphere there is uniform Poiseuille flow.
Explain why

(i) c is constant as the sphere is carried along by the flow,

(ii) a

∫ x2

x1

∫ 2π

0

σrx(a, θ, x) dθ dx = πa2[p(x2)− p(x1)],

where (r, θ, x) are cylindrical polar coordinates aligned with the tube, and x1 and x2 are
two positions far from the sphere.

Consider the case b = (1− ε)a and c = ελa, where ε � 1 and 0 6 λ < 1. Work in
the frame moving with the sphere. Let the walls of the tube have velocity −U , and assume
that the angular velocity of the sphere is negligible. The coordinates are chosen such that
the width of the narrow gap between the sphere and the tube can be approximated by

h(θ, x) = h0(θ) + x2/(2a), where h0 = ε(1 + λ cos θ)a.

Use scaling arguments to estimate the typical magnitudes of (a) the pressure
gradient, the pressure and the shear stress in the narrow gap and (b) the pressure gradient
and the shear stress ahead of and behind the sphere.

Show that in the gap

σxy

µ

∣∣∣
y=0

=
4U

h
+

6q

h2
, where q = − h3

12µ

∂p

∂x
− Uh

2
and y = a− r,

and find a similar expression for σxy on y = h. Explain carefully why q is approximately
independent of x.

By considering (ii) at O(ε−3/2), show that q = − 2
3Uh0(θ). Deduce that the pressure

gradient far from the sphere is approximately

8µU(1− 4
3ε)/a2.

[You may assume that if In ≡
∫ ∞

−∞

dξ

(1 + ξ2)n
then I1 = π, I2 =

π

2
and I3 =

3π

8
. You may

also assume that the volume flux in Poiseuille flow is (πa4/8µ)∂p/∂x.]

By considering (ii) at O(ε−1/2), show further that the leading-order pressure drop
across the sphere is √

2
ε

2µU

a

∫ 2π

0

dθ√
1 + λ cos θ

.

Show that
∫

σxy|y=hdx = 0 and comment on the significance of this result.
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4 Fluid of viscosity µ and density ρ + ∆ρ spreads as a gravity current beneath fluid
of density ρ and over a rigid horizontal surface z = 0. A constant uniform shear stress
τ is exerted on the upper surface of the gravity current by some mechanism (such as an
imposed background flow in the upper fluid). Surface tension is negligible.

Assuming that the gravity current can be described by lubrication theory, show
that its thickness h(x, y, t) obeys

∂h

∂t
+

τ

2µ

∂h2

∂x
=

∆ρ g

3µ
∇ ·

(
h3∇h

)
,

where x and y are the horizontal coordinates parallel and perpendicular to the shear
stress τ . If h has typical magnitude H and varies on a horizontal lengthscale L what
dimensionless groups must be small for the approximations of lubrication theory to hold?

Consider the case of steady flow from a point source at the origin of constant volume
flux Q. At large distances x downstream, the thickness h(x, y) and cross-stream width
2yN (x) of the current satisfy h � yN � x. By making suitable approximations and
scaling estimates, show that yN ∝ x1/3. Hence find a similarity solution for h(x, y) and
determine the corresponding yN (x).

Sufficiently close to the source, the similarity solution does not apply since the
lengthscales in the x and y directions are comparable. Use scaling arguments to estimate
the distance that the current spreads upstream of the source, explaining the balance that
determines this distance.
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END OF PAPER

Paper 77


	Rubric
	1
	2
	3
	4

