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1 (i) A uniform magnetic field B0 permeates a fluid of magnetic diffusivity η and
is subjected to the effect of the differential rotation associated with the velocity field
u = ω(x)×x, where ω(x) is everywhere parallel to B0. Using cylindrical polar coordinates
(s, φ, z), with Oz parallel to B0, so that B0 = (0, 0, B0) and u = (0, sω(s, z), 0), show that
a toroidal magnetic field (0, B(s, z, t), 0) is generated, where B satisfies the equation

∂B

∂t
= s(B0 · ∇)ω + η

(
∇2 − 1

s2

)
B . (∗)

(ii) Now adopt spherical polar coordinates (r, θ, φ) and suppose that ω = ω(r)
where ω(r) is a smooth function of r, finite at r = 0 and falling to zero more rapidly than
r−6 as r →∞. Verify that equation (∗) admits a steady solution of the form

B = − B0

η

sin θ cos θ

r3

∫ r

0

x4ω(x)dx .

(iii) Estimate the time it would take to establish this steady solution in a fluid of
very high conductivity, starting from an initial condition B = 0 at t = 0.

(iv) Explain in physical terms the effect of the same differential rotation if B0 is in
the plane of the velocity field u (rather than perpendicular to this plane).

2 (i) Explain the principles of Mean Field Electrodynamics leading to the equation

E = αB− β∇×B + . . . ,

where E is the mean electromotive force associated with a homogeneous isotropic field of
turbulence, and B is the mean magnetic field.

(ii) Using the first-order smoothing approximation (which should be justified),
obtain a relationship between the parameter α and the mean helicity of the turbulence.

(iii) Obtain a criterion for dynamo action resulting solely from the α-effect.

(iv) Discuss the application of this theory to the problem of the geodynamo.
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3 Consider an interface dynamo with a magnetic field

B(x, z, t) =
{

(−∂A/∂z,B, ∂A/∂x) z > 0
(−∂a/∂z, b, ∂a/∂x) z < 0

referred to Cartesian co-ordinates, such that the components of B satisfy the scalar
equation

∂B

∂t
− η∇2B = 0 ,

∂A

∂t
− η∇2A = αB

for z > 0, and the equation

∂a

∂t
− η∇2a = 0 ,

∂b

∂t
− η∇2b = V

∂a

∂x

for z < 0, where η, α, V are positive constants. Explain the significance of the various
terms in these equations and obtain the four conditions relating A, a and B, b at z = 0,
given that the mean velocity is continuous. [Hint: remember the electric field.]

Now consider surface dynamo waves with

(A,B) = (A0 + Cz, B0)est−Λzei(kx−Lz−ωt),

(a, b) = (a0, b0 + cz)est+λzei(kx+lz−ωt),

where Λ, λ are positive constants. Show that the amplitude of these waves grows
exponentially with time if D > 32, where the dynamo number

D =
V α

η2k3
.

How can this simple model be related to cyclic activity in stars like the Sun?
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