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1 The vertical structure of a thin, Keplerian accretion disc with constant (Thomson)
opacity and negligible radiation pressure is governed by the equations

∂p

∂z
= −ρΩ2z, (1)

∂F

∂z
=

9
4
αΩp, (2)

∂T

∂z
= − 3κρF

16σT 3
,

p =
kρT

µmmp
.

(i) Explain briefly the physical meaning of each equation.

(ii) Show that the problem of the vertical structure of such a disc can be reduced to a
universal system of dimensionless ordinary differential equations and boundary conditions
by a suitable rescaling of the variables. You may assume that the viscosity parameter α and
the mean molecular weight are independent of z and that the ‘zero boundary conditions’
apply at the surfaces of the disc.

(iii) Assuming that the dimensionless system has a unique solution, deduce that the
density-weighted mean kinematic viscosity of the disc is of the form

ν̄ = Cα4/3(GM)−1/3
(κ
σ

)1/3 (µmmp

k

)−4/3

rΣ2/3,

where Σ is the surface density of the disc at a distance r from the central mass M , and C
is a dimensionless constant, which need not be determined.

(iv) Equations (1) and (2) involve several approximations that are valid only in the limit
of a thin disc. Estimate the order of magnitude of the terms neglected in these equations,
and show that the fractional error in each equation is of the order of (H/r)2, where H is
the semithickness of the disc.
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2 In a frame of reference rotating with uniform angular velocity Ω, an incompressible
fluid of uniform density ρ and kinematic viscosity ν satisfies the equation of motion

∂u
∂t

+ u · ∇u + 2Ω× u = −∇ψ + ν∇2u.

(i) Explain the meaning of the variable ψ, and state a further condition satisfied by the
velocity u.

(ii) Let (x, y, z) be Cartesian coordinates in the rotating frame, such that Ω = Ω ez, and
let the basic state of the fluid consist of a uniform shear flow u0 = −2Ax ey, where A is a
constant. Show that exact solutions exist for perturbations of this basic flow, in the form
of sheared plane waves such that

u = u0 + Re {v(t) exp [ik(t) · r]} .

Obtain the evolutionary equations for v(t) and k(t).

(iii) Find the general solution of the evolutionary equations in the case of two-dimensional
sheared disturbances (kz = 0, vz = 0, but ky 6= 0). Show that the energy of the
perturbation is proportional to

(1 + T 2)−1 exp
[
− 1
Re

(T + 1
3T

3)
]
,

where T = 2At is a dimensionless time variable with respect to a conveniently chosen
origin and Re = A/(νk2

y) is the Reynolds number of the disturbance.

(iv) Determine an approximate expression, valid for Re� 1, for the maximum factor by
which the energy of such a disturbance can be transiently amplified.

(v) Describe in qualitative terms how these results compare with the behaviour of three-
dimensional axisymmetric disturbances (ky = 0) in both Keplerian and non-rotating shear
flows.

3 Give a summary account of the magnetorotational instability in accretion discs.
Your description should incorporate a derivation and analysis of an appropriate dispersion
relation such as

(ω2 − ω2
A)2 − 4Ω(Ω−A)ω2 − 4ΩAω2

A = 0,

based on any reasonable simplifying assumptions. Also include a physical interpretation
of the mechanism of instability and a brief discussion of its significance for accretion discs.
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