

MATHEMATICAL TRIPOS Part III

Thursday 2 June, 2005 1.30 to 3.30

PAPER 61

COSMOLOGY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag

Script paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 In the early Universe the Friedmann equation, with zero cosmological constant is

$$H^2 = \frac{8\pi}{3} \ G\rho - \frac{k}{a^2} \,,$$

and the Raychaudhuri equation is

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3} G(\rho + 3P) \, . \label{eq:generalized_eq}$$

Consider a closed universe (k > 0) dominated by pressureless matter (P = 0). By considering conformal time, τ , show that

$$a(\tau) = \frac{\Omega_0}{2(\Omega_0 - 1)} \left[1 - \cos(\sqrt{k}\tau)\right]$$
$$t(\tau) = H_0^{-1} \frac{\Omega_0}{2(\Omega_0 - 1)^{3/2}} \left[\sqrt{k}\tau - \sin(\sqrt{k}\tau)\right]$$

where Ω_0 is the present density parameter, H_0 the present Hubble parameter and the normalisation is such that the scalefactor today is unity $(a(\tau_0) = 1)$.

Hence obtain an expression for the present age, t_0 , of the Universe for this model. Determine the time, t_{BC} , when the Universe ends in a big crunch.

Paper 61

3

2 In the early Universe the Hubble constant is

$$H = 1.66 \ g^{*1/2} \ T_{/M_{Pl}}^2 \,,$$

where the Planck mass, $M_{Pl} \sim 10^{19}$ GeV. For temperatures T > 1MeV neutrons and protons are in thermal equilibrium via the interactions $\nu + n \leftrightarrow p + e^+$, with an interaction rate $\Gamma \sim G_F^2 T^5$, where G_F is the Fermi constant given by $G_F \approx 10^{-5} m_p^{-2}$ and the proton mass, m_p is ~ 1 GeV. If the effective number of degrees of freedom at this time is $g^* = 10.75$, estimate the decoupling temperature, T_d , of neutrinos. Explain why the neutron to proton ratio at neutrino decoupling is given by

$$\frac{n_n}{n_p} = \frac{X_n}{X_p} = \exp(-Q_{/T_d})$$

where $Q = m_n - m_p$ and $X_i \equiv \frac{n_i}{n_B}$, where n_B is the baryon number of the Universe.

Subsequently deuterium forms through the interaction $n+p \leftrightarrow D+\gamma$. Estimate the ratio of the fractional deuterium abundance, X_D/X_nX_p , in terms of the binding energy, $B = m_D - m_n - m_p$, and the baryon to photon ratio $\eta = \frac{n_B}{n_{\gamma}}$.

Roughly estimate the ⁴He abundance. Why is ⁴He synthesised at about $T \sim 0.1$ MeV? If the neutron proton mass difference were increased by 10% how would this affect the ⁴He abundance?

3 In an FRW universe a real scalar field ϕ has potential $V(\phi) = \frac{\lambda}{4}\phi^4$, where λ is a small positive constant. The equations of motion for such a field are

$$H^{2} = \frac{8\pi G}{3} \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right],$$
$$\ddot{\phi} + 3H \dot{\phi} + \frac{dV}{d\phi} = 0.$$

Discuss the conditions the field and potential must satisfy at the Planck epoch for 'vacuum domination' and 'slow roll'. Use these conditions to obtain approximate inflationary solutions for $\phi(t)$ and the scale factor, a(t).

Determine the value of ϕ when inflation ends, and the overall expansion of the Universe, assuming inflation begins during the Planck era when $\rho \sim M_{Pl}^4$. Calculate the reheat temperature, T_R , in terms of λ and g^* , the effective number of degrees of freedom. Briefly discuss how the horizon problem is solved.

Paper 61

[TURN OVER

4 At temperatures above 1MeV the three species of neutrinos and their anti-neutrinos are kept in thermal equilibrium via the interactions $l^- + \nu \leftrightarrow l^- + \nu$, where l^- is a generic lepton. The interaction rate is $\Gamma_{\nu} \sim G_F^2 T^5$, where $G_F \sim 10^{-5} m_p^{-2}$ and the proton mass is $m_p \sim 1 GeV$. At about $T \sim 0.5 MeV$ most electrons and positrons annihilate.

Describe in detail why the ratio of the neutrino to photon temperature today is given by

$$\frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3} \,.$$

If one of the neutrino species has a small mass, m_{ν} , give an estimate of the order of magnitude of this mass by assuming that this massive neutrino is the dominant matter component in a flat FRW universe at the present time. You may take the photon temperature today to be $T_{\gamma} = 2.73^{\circ}K = 2 \times 10^{-13} GeV$ and the Hubble time $H_0^{-1} = 10^{10} h^{-1}$ years $= 4.5 \times 10^{41} h^{-1} GeV^{-1}$ with 0.5 < h < 1.0.

END OF PAPER