

MATHEMATICAL TRIPOS Part III

Thursday 9 June, 2005 1.30 to 3.30

PAPER 59

QUANTUM INFORMATION SCIENCE

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1 The state $|\psi\rangle$ is an entangled pure state of qubits. Show that there exists a choice of axes for projective measurements on the two particles which violates the CHSH inequality.

2 State and prove the Schrödinger-Jaynes-Hughston-Jozsa-Wootters theorem classifying the ensembles of pure states corresponding to a given density matrix ρ .

3 The states $|\psi_1\rangle, \ldots, |\psi_N\rangle$ are linearly independent and are not all orthogonal. Is it possible to build a device which, if given as input an unknown choice $|\psi_i\rangle$ (where $1 \leq i \leq N$), always returns as output the value of *i*? Is it possible to build a device which, if given as input an unknown choice $|\psi_i\rangle$ (where $1 \leq i \leq N$), either (with some probability $p_i > 0$) returns as output the value of *i*, or (with probability $(1 - p_i)$) returns as output the declaration "state not identified". Justify your answers.

4 Alice creates two identical pure qubit states $|\phi\rangle$ and gives them to Bob, without telling him what the states are. Bob attempts to create a third qubit in the same state $|\phi\rangle$, and then returns all three qubits to Alice. Alice then applies projective measurements onto the state $|\phi\rangle$ to test that each of the three qubits is in the state $|\phi\rangle$. Show that there exists some probability p > 0 such that, whatever strategy Bob employs, the probability of at least one of the qubits failing Alice's tests is greater than p.

END OF PAPER