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Note: the following properties of the Gamma and Inverse Gamma distributions may
be used without proof:

If X ∼ Γ(a, b) then

fX(x) =
ba

Γ(a)
xa−1e−bx, x > 0

and E(x) =
a

b
, with var(x) =

a
b2

, for a, b > 0.

If X ∼ Γ−1(a, b) then

fX(x) =
ba

Γ(a)
x−(a+1)e−b/x, x > 0

and

E(x) =
b

a− 1
, with var (x) =

b2

(a− 1)2(a− 2)
for a > 2 and b > 0.

1 Time Series

Explain what is meant by a weakly stationary process {Xt} with autocovariance
function γk and spectral density fX(λ). Write down an expression for fX(λ) in terms of
the γk’s

Define a white noise process, WN(0, σ2), and find its spectral density function.

Let Yt =
∑

r∈Z crXt−r with
∑

r∈Z |cr| < ∞. Show that {Yt} is weakly stationary,
and find its spectral density function in terms of fX(λ) and C(z) =

∑
r∈Z cr zr.

Hence, or otherwise, find the spectral density function of {Xt} where

Xt = εt + θ1εt−1 + θ2εt−2 ,

and {εt} is a white noise process with mean 0 and variance σ2.

For the process defined by

Xt = εt + θεt−1.

with |θ| < 1, find c0, c1, c2, . . . such that
∑∞

r=0 crXt−r is a white noise process.
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2 Time Series

Let
Xt = φ1Xt−1 + · · ·+ φpXt−p + εt (∗)

where φ1, . . . , φp are constants and {εt} is a white noise process with mean 0 and variance
σ2. State a condition that ensures that there is a weakly stationary solution to (∗).

Suppose that p = 2, φ1 = α and φ2 = α2. Show that the stationarity condition is
satisfied if and only if |α| < α0 for some α0, and find α0.

For |α| < α0, find the Wold representation of {Xt}.

Assume |α| < α0 and α is known. Write down the linear minimum mean square
error forecasts for XT+1 and XT+2 based on XT , XT−1, . . .

3 Monte Carlo Inference

(a) Define the congruential generator and explain how it can be used to generate a sequence
of pseudo-random numbers {Ui} ∈ [0, 1].

State the conditions necessary for a non-multiplicative congruential generator to have
maximal possible cycle length when the shift c > 0.

In a congruential generator with modulus, M = 12k, for some positive integer k > 1,
describe a condition on the multiplier, a, such that the cycle length is equal to M .

(b) (i) Show how you could sample from a density f(x), corresponding to a N(0, σ2)
distribution, via the ratio of uniforms method using h(x) = exp

(
− 1

2

(
x
σ

)2
)

and

f(x) =
h(x)

∞∫
−∞

h(x)dx

−∞ 6 x < ∞

(ii) Show how you could sample from a Weibull distribution with density,

g(x) =
α

β
xα−1 e−xα/β 0 6 x < ∞

using the method of inversion.

(iii) Therefore show how you would sample from a Weibull and half normal distribution
mixture

k(x) = 2pf(x) + (1− p)g(x) 0 6 x < ∞
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4 Monte Carlo Inference

(a) Explain how the method of importance sampling may be used to estimate µ = Ef [θ(x)]
from a sample x1, . . . , xn ∼ g(x), where f(x) and g(x) are normalised densities with
common support, and θ(x) denotes any general scalar function of x.

Now suppose

f(x) =
4
π

√
1− x2, x ∈ (0, 1) .

Show how we can use a function

g(x) ∝ x2 x ∈ (0, 1)

to estimate µg = Ef (x) via importance sampling.

Show that the variance of an importance sampling estimate is minimised by sampling from

g = g0 =
|θ(x)f(x)|∫
|θ(x)f(x)| dx

.

Hence, show that the variance of µg above is minimised by using

g = g0 = 3x
√

1− x2.

(b) Consider the model
yi = xT

i β + ei

E[ei] = 0

where xi is a (2 × 1) vector of observations, β1 and β2 are the first and second elements
of β respectively, and β is estimated by β̂ = (XT X)−1(XT Y ), where X is the matrix of
rows xT

i , and Y is the vector with components yi.

Suggest an estimate for the statistic θ = β1β2.

Show how you could construct a 95% confidence interval for θ using the following two
methods:

(i) Percentile bootstrap

(ii) Equal-tailed bootstrap-t.
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5 Monte Carlo Inference

(a) Describe under what circumstances, and for what purpose, you might consider using
the Metropolis Hastings algorithm.

Describe the random-walk Metropolis Hastings algorithm.

Briefly explain the following MCMC implementation issues and how they may be dealt
with in practice.

(i) convergence;

(ii) single component versus block updates;

(iii) the tuning of proposal variances to achieve good mixing qualities.

Figure 1 (see over the page) gives some initial trace plots for each parameter from a
3-parameter posterior, π(θ1, θ2, θ3|X), obtained using a single-component random-walk
Metropolis Hastings MCMC algorithm. Assuming this to be one step in an algorithm
tuning exercise, what changes would you make to the algorithm before rerunning?

(b) The following model can be used to study the spread of infectious diseases in trees:

Pi = 1− exp

−α
∑
j∈It

K(dij)


where Pi is the probability of a susceptible tree being infected

α is a scaling parameter
dij is the distance between tree i and tree j
K(dij) is a distance kernel which characterises the chance of infection

occurring over a given distance dij

It is the set of all trees infected at time t

The likelihood is given by

f(X|θ) =
∏

i∈It+1

Pi

∏
i/∈It+1

1− Pi

where X represents the data and θ is a vector of parameters to be estimated.

Let K(dij) = K1(dij) = d−β
ij , and place priors on α and β such that, p(α) ∼

N(µα, σ2
α) and p(β) ∼ N(µβ , σ2

β), respectively.

Explain why a Gibbs sampler would not be appropriate for estimating the marginal
posterior distributions of α and β.

Explain how we could use MCMC methods to compare the model with K1(dij) above
with that with a second kernel, K2(dij) = exp{−γdij}, where the prior for γ is such that
p(γ) ∼ N(µγ , σ2

γ).
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Figure 1. Sample Path Trace Plots for parameters θ1, θ2 and θ3
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6 Monte Carlo Inference

Describe the annealing algorithm for minimising some function f(θ) with respect
to θ.

Suppose that we observe data x1, . . . , xm and that we wish to decide whether a
Poisson, P0(λ), or a normal, N(µ, σ2), provides the best model for these data. Calculate
the maximum likelihood estimates for λ, µ and σ2.

Derive an annealing algorithm to fit the normal model using Gibbs updates. Hence,
show that the annealing algorithm converges to the maximum likelihood estimate in this
case.

Now calculate the Boltzmann distribution with f(λ) equal to the log-likelihood
under the Poisson model and show that this converges to a point mass at the maximum
likelihood estimate as the temperature decreases.

Finally, calculate the form of the AIC statistic for each model. Hence, describe how
your annealing algorithm can be extended to distinguish between the two models. Make
clear (and fully describe) any proposal distributions, Jacobian terms and acceptance ratios
that you need for your trans-dimensional simulated annealing algorithm.

END OF PAPER
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