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1 (a) Consider a composite system AB which is in a pure state |ΨAB〉. What is the
joint entropy S(A,B) of the system? Define the conditional entropy S(B|A) and show
that it is negative if and only if the state |ΨAB〉 is entangled.

(b) Prove that any quantum state can be purified. Use purification to prove the triangle
inequality

S(A,B) ≥ |S(A)− S(B)|.

Here S(A) and S(B) denote the von Neumann entropies of the subsystems A and B
respectively.

2 (a) Derive the Schmidt decomposition of a pure state |ΨAB〉 of a composite system
AB. Use it to prove that the density matrices of the subsystems A and B have the same
non-zero eigenvalues.

(b) Find the Schmidt numbers for the following states:

(i) |Φ〉 =
1√
3

[|10〉 − |01〉+ |11〉]

(ii) |Ψ〉 =
1
2

[|00〉 − |01〉 − |10〉+ |11〉]

3 (a) Can the Bell state

|Ψ−〉 :=
1√
2

(|01〉 − |10〉)

be transformed to the bipartite pure state

|Φ〉 = cosφ|01〉+ sinφ|10 >,

where 0 ≤ φ ≤ π/4, by local operations and classical communications (LOCC) alone ?
Justify your answer.

(b) Prove that the Schmidt number of a pure state cannot be increased by LOCC alone.
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4 (a) What is a discrete memoryless classical channel? Define its capacity. Consider
a channel with input and output alphabet I = {1, 2, 3}. With probability 2/3 any input
letter remains unaffected, while with probability 1/3 it gets changed to the next letter.
For example, if 3 is the input letter, then the output is 3 with probability 2/3 and 1 with
probability 1/3. Find the capacity of this channel.

(b) The depolarizing channel is defined as

Φ(ρ) = (1− p)I +
p

3

3∑
k=1

σkρσk,

where I is the identity operator and σ1, σ2 and σ3 denote the Pauli matrices σx, σy and
σz respectively. Derive the effect of this channel on the Bloch sphere.

5 (a) Alice has two classical bits that she wants to send to Bob. However, she only
has a quantum channel at her disposal, which she is allowed to use only once. Under what
condition can she achieve her goal ? What is the protocol that she would use?

(b) The quantum [[7, 1, 3]] Steane code XSteane has basis states

|ψev〉 =
1√
8

∑
x∈Cev

|x〉 ; |ψodd〉 =
1√
8

∑
x∈Codd

|x〉.

Here Cev and Codd denote the two sets of 8 codewords of the classical (7, 4, 3) Hamming
code CH , corresponding to codewords of even and odd weight, respectively. Prove that
this code can correct, non-degenerately, a single phase flip error. [Hint: C⊥ev = CH , where
C⊥ev is the dual of the code Cev.]

END OF PAPER
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