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ELLIPTIC CURVES

Attempt FOUR questions.

There are FOUR questions in total.

The questions carry equal weight.

Throughout, Z will denote the ring of integers, and Q the field of rational numbers.
For each prime number p, Zp will denote the ring of p-adic numbers, and Fp the
field Z/pZ.

You may also use the following formulae attached to a generalized Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 .

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6,

1728∆ = c3
4 − c2

6, j = c3
4/∆ .
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1 (i) Let E be the elliptic curve over Q

y2 + y = x3 − x .

Compute the discriminant of E, and find the set of primes where E has bad
reduction.

(ii) If Ẽ denotes the reduction of E modulo a prime number p, compute the
cardinality of Ẽ(Fp) for p = 2 and 3.

(iii) Prove that P = (0, 0) has infinite order in E(Q).

(iv) Compute 2P and 3P .

(v) Prove that both the x and y coordinates of 5P and 7P do not lie in Z, and that
the same is true of 7P ..

2 (i) Define an isogeny between two elliptic curves over a field k, and explain briefly
why an isogeny induces a homomorphism between their groups of points.

(ii) Let E1 and E2 be the elliptic curves over F5 defined by

E1 : y2
1 = x3

1 − x1 , E2 : y2
2 = x3

2 − x2 + 1 .

Compute the cardinalities of E1(F5) and E2(F5) and show that these two abelian
groups are not isomorphic.

(iii) Show that

x2 =
y2
1

(x1 − 1)2
− 2, y2 =

x1y1

x1 − 1
− (x1 + 1)y1

(x1 − 1)2

defines an isogeny from E1 to E2, and determine its degree.

(iv) Prove that E1 and E2 are not isomorphic over the algebraic closure of F5.

(Hint: compute j-invariants.)
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3 Let E be an elliptic curve over the field Qp of p-adic numbers, having good
reduction. Let Ẽ denote the reduction of E modulo p.

(i) Define the reduction map

φ : E(Qp)→ Ẽ(Fp) ,

and prove it is a homomorphism of groups.

(ii) Define the formal group Ê attached to E, and explain why the kernel of φ can
be identified with the group Ê(pZp).

(iii) If q is any prime different from p, prove that the q-primary subgroup of E(Qp)
is finite, and its order is equal to the order of the q-primary subgroup of Ẽ(Fp).

4 Let E be an elliptic curve over Q, having a rational point of order 2. Write an essay
covering the following material:-

(i) a brief sketch of the proof that E(Q) is finitely generated;

(ii) a sketch of the procedure which usually allows one to compute the rank gE of
E(Q);

(iii) the calculation of gE for two numerical examples of elliptic curves E, one of
which at least has gE > 0.

END OF PAPER
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