

MATHEMATICAL TRIPOS Part III

Friday 10 June, 2005 1.30 to 4.30

PAPER 3

REPRESENTATION THEORY OF THE SYMMETRIC GROUPS

Attempt **FOUR** questions. There are **EIGHT** questions in total. The questions carry equal weight.

Throughout, for $n \in \mathbb{N}$, $G = \Sigma_n$ is the symmetric group of degree n and F is a field of characteristic p.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Prove the Submodule Theorem, which states that every submodule of the permutation module, M^{λ} , of Σ_n acting on the Young subgroup Σ_{λ} corresponding to the partition λ of n, either contains the Specht module S^{λ} or is contained in $S^{\lambda \perp}$. In the course of your proof all terms which were introduced during the lecture course should be defined. Deduce that $D^{\lambda} = S^{\lambda}/(S^{\lambda} \cap S^{\lambda \perp})$ is zero or absolutely irreducible. State necessary and sufficient conditions, in terms of λ and the characteristic of F, for D^{λ} to be non-zero, and outline a justification for the conditions.

2 What does it mean to say that λ dominates μ (written $\lambda \geq \mu$) for partitions λ and μ of n? Consider the permutation module M^{μ} of G acting on the Young subgroup Σ_{μ} corresponding to the partition μ of n. Show that every composition factor of M^{μ} has the form D^{λ} (as defined in Question 1), with $\lambda \triangleright \mu$ except if μ is p-regular when D^{μ} occurs precisely once. State Young's Rule which determines these factors exactly over \mathbb{Q} . Illustrate Young's Rule by using it to calculate $S^{(3,2)} \otimes S^{(2)} \uparrow^{\Sigma_7}$ over \mathbb{Q} .

3 Describe, with justification, the general form of the composition factors of the Specht module S^{μ} over F. Hence give the general form of the matrix (M) recording the composition factors of the Specht modules over F with rows and columns suitably ordered (the results of the previous question may be quoted if desired). Why is (M) the *p*-modular decomposition matrix for G?

Construct (M) explicitly when n = 3 for any characteristic.

4 State the Littlewood-Richardson Rule, defining all terms used. Illustrate the Rule by calculating the Littlewood-Richardson coefficient of $S^{(5,3,2,1)}$ in $S^{(3,2,1)} \otimes S^{(3,2)}$. Deduce the Determinantal Form $[\lambda] = \det([\lambda_i + j - i])$. Illustrate the Form by computing [3, 2, 2].

5 State and prove the Branching Theorem. State also the Hook Rule on the dimensions of the ordinary irreducible representations of G.

Show that, for each n, $S^{(n)}$ and $S^{(1^n)}$ are the only one-dimensional ordinary representations of G. Show also that for $2 \leq n \neq 4$, the lowest dimension $\neq 1$ of an ordinary irreducible representation of G is n-1, and that for $2 \leq n \neq 6$, $S^{(n-1,1)}$ and $S^{(2,1^{n-2})}$ are the only ordinary irreducible representations of G which are of dimension n-1. Find the exceptional cases for n=4 and n=6.

Paper 3

3

6 State the Kernel Intersection Theorem, ensuring that you define carefully all the terms you use. State also the semistandard homomorphism theorem.

Prove that the Specht module S^{μ} contains a non-zero vector which is fixed under the *G*-action if and only if, for every i, $\mu_i \equiv -1 \pmod{p^{t_i}}$, where t_i is the least non-negative integer such that $\mu_{i+1} < p^{t_i}$.

For which *p*-regular partition μ is the unique top composition factor, D^{μ} of S^{μ} isomorphic to the alternating representation $S^{(1^n)}$? You may assume, without proof, that $S^{\lambda} \otimes S^{(1^n)}$ is isomorphic to the dual of $S^{\lambda'}$.

7 State the Murnaghan-Nakayama Rule. Illustrate it by computing the value of $\chi^{(3^3)}$ on the element (1234)(56)(789).

Recall that a hook diagram is one of the form $[x, 1^y]$. Use the Littlewood-Richardson Rule to show that, unless both $[\alpha]$ and $[\beta]$ are hook diagrams, $[\alpha][\beta]$ contains no hook diagrams. Deduce that if $[\alpha] = [a, 1^{n-r-a}]$ and $[\beta] = [b, 1^{r-b}]$ then

 $[\alpha][\beta] = [a+b, 1^{n-a-b}] + [a+b-1, 1^{n-a-b+1}] + \text{ some non-hook diagrams}.$

Finally deduce a special case of the Rule as follows. Suppose that ρ is an *n*-cycle, and ν is a partition of *n*. Show that $\chi^{\nu}(\rho) = (-1)^{n-x}$ if $[\nu]$ is the hook diagram $[x, 1^{n-x}]$, otherwise it is zero.

8 Explain the abacus notation for a partition. Define β -numbers and describe their relationship to first column hook lengths. Use this notation to show that the *p*-core of a partition is well-defined.

What is a p-block of G? State the "Nakayama Conjecture" on the p-block structure of G and write an essay indicating the main steps in its proof.

END OF PAPER

Paper 3