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1 Prove that m is transcendental. State the more general Lindemann theorem and
show that it implies that cos v cos § is transcendental for all non-zero algebraic «, 3.

2 State and prove Siegel’s lemma on the solution of linear equations.

Define Siegel’s E-functions. State the Siegel-Shidlovsky theorem and specify the
particular E-functions that give Lindemann’s theorem.

3 Using Mahler’s method, show that the Fredholm series ZZO:O 2" where 1 is an
integer > 2, assumes transcendental values for all algebraic z with 0 < |z| < 1.

Prove that, for [ > 3 and z = %, the transcendence of the Fredholm series can be
obtained directly from the Thue-Siegel-Roth theorem.

4 State the Gelfond-Schneider theorem and outline a proof.

Show that the theorem implies that if «,( are algebraic numbers, not 0 or 1,
then log o/ log ( is either rational or transcendental. State a generalisation applicable to
arbitrarily many logarithms.

5 Assuming an appropriate estimate for a logarithmic form, show that the equation
ax + By = 1, where «, 3 are non-zero elements of an algebraic number field K, has only
finitely many solutions in units x,y in K. Indicate how this leads to a proof of Thue’s
theorem on the equation F(x,y) = m.

6 State the abc-conjecture. Show that it implies that the Fermat equation

has only finitely many solutions in positive integers x,y, z and n > 3.

Show further that the conjecture implies that the exponential equation
ax™ —by" =c,
where a, b, c are given positive integers, has only finitely many solutions in positive integers

x,y and n > 2. Indicate how the latter can be established from the theory of linear forms
in logarithms without any unproved hypothesis.
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