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1 Write an essay on the rationalisation XQ of a topological space X, describing
its construction from the Postnikov tower. You should define the key concepts, such
as Eilenberg-MacLane spaces, principal fibrations, k-invariants, and you should state
(without proof) the key theorems that you use. You should also discuss the significance
of XQ in relation to maps from X to rational spaces.

[Make any assumptions on π1X that you find convenient.]

2 (i) Define the Whitehead bracket and list its basic algebraic properties. For
bilinearity (but not for the other properties), also discuss the exceptional case of π1.

(ii) The Hopf invariant of a map f : S4n−1 → S2n is the square of the generator of H2n in
the space Xf , obtained by attaching D4n to S2n via f . Show that the Whitehead square
of the generator α ∈ π2n(S2n) has Hopf invariant 2.

3 Prove that the rational homotopy groups of a simply connected space Y form a free
Lie algebra under the Whitehead bracket iff Y is rationally equivalent to the suspension
of some space X. Show, in that case, that the homology of ΩY , with the Pontryagin
product, is the free tensor algebra generated by the reduced homology H̃∗(X;Q).

[Any general theorems that you use must be clearly stated.]

4 By computing minimal models, prove that the space CP5/CP2 (obtained from
CP5 by collapsing CP2 to a point) has the rational homotopy type of S6 ∨ S8 ∨ S10.

5 Let X be simply connected and assume that the Hurewicz homomorphism is
surjective. Show that X is formal, and is rationally equivalent to a wedge of spheres.

[Hint: You may want to show that the space is formal and that the cup-product on reduced
cohomology vanishes. Consider for that the projection A+ → A+/A+ · A+, in a minimal
model A∗.]

6 Consider the degree 1 map f : CPn → S2n.

(i) Describe the induced map f∗ on minimal DGA models of these spaces.

(ii) Determine the minimal model for the homotopy fibre of this map.

[You must explain your reasoning. If you have trouble, try the case n = 2. Find the
rational homotopy groups in general.]
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