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1 (a) Give the definition of the scroll F = F(a1, . . . , an) and describe the standard
line bundles L, M on F.

Compute all intersection numbers of L, M and state the formula for the canonical
class of F.

Describe the natural embeddings of F in projective space and check that deg(F) =
codim(F) + 1.

(b) Prove that

F(a1, . . . , an) ∼= F(b1, . . . , bn) if and only if {a1, . . . , an} = {b1 + c, . . . , bn + c}

for some c.

2 Give the definition of a trigonal curve. Show that the canonical image of a trigonal
curve C of genus g is contained in a surface scroll F(a1, a2) ⊂ Pg−1 where g = a1 + a2 + 2
and the canonical morphism F(a1, a2) → P1 induces the g1

3 . Suppose that a1 6 a2, set
a = a2 − a1. Let L ⊂ Fa and B ⊂ Fa be the fibre and the negative section. Verify that
F(a1, a2) is Fa embedded by a2L+B and show that

C ∈ |(a+ a2 + 2)L+ 3B|

Show that a general element of this linear system is nonsingular if and only if 3a 6 g+ 2.

3 (a) Give definitions and examples of monogonal, hyperelliptic and trigonal linear
systems on a K3 surface. Briefly explain why your examples are indeed examples.

(b) State the first, second and third dichotomy for linear systems on K3 surfaces.
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4 (a) Give the definition of polarised Hodge structure. Give the definition of the
Griffiths domains Ď and D parameterising polarised Hodge structures.

(b) Discuss in detail the weight one case: Fix the nondegenerate antisymmetric
form

ψ =
(

0 −Ir
Ir 0

)
on Z2r. Consider Hodge structures on Z2r polarised by the form ψ and show that
Ď = SpGr(r, 2r) is the Grassmannian of r-dimensional complex subspaces H ⊂ C2r which
are isotropic for ψ. Calculate the dimension of Ď. Describe an explicit identification:

D = {Z ∈Mr(C) | tZ = Z, =Z > 0}

and describe explicitly the action of Sp2r(Z) on D.

(c) Briefly describe the Griffiths domains parameterising weight two Hodge struc-
tures on H2(X,Z) where X is a K3 surface.

5 (a) Give the definition of variation of Hodge structure.

(b) Let f :X → S be a smooth family of Kähler manifolds. Briefly explain how
the cohomology of fibres gives rise to a variation of Hodge structure. Sketch the proof of
Griffiths transversality.

(c) Describe the lattice L = H2(X,Z) for a K3 surface X.

(d) Briefly state your favourite version of the Torelli theorem for K3 surfaces.
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