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1 Let A be an m ×m matrix with zeros and ones and let ΣA be the set of allowed
two-sided sequences. Consider the subshift of finite type σ : ΣA → ΣA. Prove that:

(a) the number of fixed points of the shift σ in ΣA is the trace of A;

(b) the number of allowed words of length n + 1 beginning with the symbol i and
ending with j is the i, j-th entry of An; and

(c) the number of periodic points of the shift σ of period n in ΣA is the trace of
An.

2 Let X be a compact metric space and f : X → X a continuous map.

(a) Define topological transitivity;

(b) Suppose that for any two non-empty open sets U and V , there exists a positive
integer n such that fn(U) ∩ V 6= ∅. Show that f is topologically transitive.

(c) Show that if f(X) = X and f is topologically transitive, then for any two non-
empty open sets U and V , there exists a positive integer n such that fn(U) ∩ V 6= ∅. Is
the result still true if we drop the condition f(X) = X?

3 Let X be a compact metric space and f : X → X a continuous map.

(a) Show that the topological entropy of f does not depend on the particular choice
of metric generating the topology of X.

(b) Show that topological entropy is an invariant of topological conjugacy.

(c) Let A be a hyperbolic toral automorphism of the 2-torus. Find the topological
entopy of A. Justify your answer.

4 (a) State the Birkhoff ergodic theorem.

(b) Given an integer m with m > 2, consider the expanding map Em : S1 → S1

given by
Em(x) = mx mod 1.

Show that Em is ergodic with respect to Lebesgue measure.

(c) Show that for almost every x ∈ [0, 1) (with respect to Lebesgue measure) the
frequency of 1’s in the binary expansion of x is 1/2.

Paper 16



3

5 Let X be a compact metric space and f : X → X a continuous map. A sequence of
points x0, x1, x2, . . . in X is said to be evenly distributed with respect to a Borel probability
measure µ, if the following condition is satisfied: for every continuous function ϕ : X → R,
the limit

lim
n→∞

1
n

n−1∑
i=0

ϕ(xi)

must exist and be equal to the space average∫
X

ϕ dµ.

Show that if the forward orbit of x is evenly distributed for µ-almost every x, then
µ is f -invariant and ergodic. [You may use that µ is invariant if and only if for every
continuous ϕ, ∫

X

ϕ ◦ f dµ =
∫

X

ϕ dµ.

To prove ergodicity you may assume:

(i) Birkhoff ergodic theorem;

(ii) given any Borel set S, µ(S) is the supremum of µ(K) as K varies over compact
sets of S. Also, µ(S) is the infimum of µ(U) as U varies over open sets containing S;

(iii) given an open set U and a compact set K ⊂ U , there exists a continuous
function ϕ : X → [0, 1] which takes the value 1 on K and the value 0 outside U .]

END OF PAPER
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