

MATHEMATICAL TRIPOS Part III

Thursday 2 June, 2005 1.30 to 4.30

PAPER 14

ALGEBRAIC GEOMETRY

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet

Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ be an exact sequence of sheaves of abelian groups on a space X. Assuming the result that when \mathcal{F}_1 is flabby, the maps on sections $\mathcal{F}_2(U) \to \mathcal{F}_3(U)$ are surjective for all open $U \subset X$, deduce that when **both** \mathcal{F}_1 and \mathcal{F}_2 are flabby, so too is \mathcal{F}_3 . Indicate briefly the construction of sheaf cohomology groups via flabby resolutions, and deduce that any flabby sheaf \mathcal{F} has trivial higher cohomology on X.

Let X now denote a smooth irreducible curve. Describe what is meant by the divisor class group $\operatorname{Cl}(X)$. Prove that $\operatorname{Cl}(X)$ is isomorphic to all of the following groups (where \mathcal{K}_X^* denotes the constant multiplicative sheaf of non-zero rational functions and \mathcal{O}_X^* the multiplicative sheaf of nowhere vanishing regular functions on X):

- (a) The cokernel of the map $H^0(X, \mathcal{K}^*_X) \to H^0(X, \mathcal{K}^*_X/\mathcal{O}^*_X)$.
- (b) $\operatorname{Pic}(X)$, the group of invertible \mathcal{O}_X -modules, modulo isomorphism.
- (c) $H^1(X, \mathcal{O}_X^*)$.

2 Describe a construction for the structure sheaf of a (not necessarily irreducible) affine variety. Describe briefly what is meant by an (abstract) variety (X, \mathcal{O}_X) , and what it means to say that two varieties are *birationally equivalent*. Define the ring of rational functions $\operatorname{Rat}(X)$ on a variety X, and show that birationally equivalent varieties have isomorphic rings of rational functions.

Suppose now that X is an affine variety with coordinate ring A. Show that any open dense subset $U \subset X$ is a finite union of basic open subsets D(f) with $f \in A$, where $D(f) = \{P \in X : f(P) \neq 0\}$, with at least one being dense in X. If S denotes the multiplicative subset of A consisting of elements which are not zero-divisors, prove that $\operatorname{Rat}(X) \cong S^{-1}A$ as k-algebras, and that there is a canonical injection $A \hookrightarrow \operatorname{Rat}(X)$. For any given point $P \in X$, show that the local ring $\mathcal{O}_{X,P}$ may be regarded as a subring of $\operatorname{Rat}(Y)$, for Y an appropriate closed subvariety of X (which you should identify).

3

3 Define what is meant by a quasi-coherent \mathcal{O}_X -module. In the case when X is affine and M is a k[X]-module, describe the construction of the associated \mathcal{O}_X -module \tilde{M} (a detailed check of the sheaf conditions for \tilde{M} is not required), and show that it is quasicoherent. Prove that \tilde{M} is coherent if and only if M is a finitely generated k[X]-module. Assuming the result that every quasi-coherent \mathcal{O}_X -module on an affine variety X is of the form \tilde{M} , for M the module of global sections, deduce that, if $\phi : \mathcal{G}_1 \to \mathcal{G}_2$ is a morphism of quasi-coherent \mathcal{O}_Y -modules on an arbitrary variety Y, then $\operatorname{Ker}(\phi)$ is a quasi-coherent \mathcal{O}_Y -module.

Suppose now that $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of varieties, and that \mathcal{F} is a quasi-coherent \mathcal{O}_X -module. In the case when both X and Y are affine, prove that $f_*\mathcal{F}$ is a quasi coherent \mathcal{O}_Y -module. Suppose now that Y is affine but X is a general variety, and that $X = \bigcup U_i$ is a finite cover of X by open affines. By considering an appropriate morphism

$$\bigoplus_i f_*(\mathcal{F}|_{U_i}) \to \bigoplus_{i,j} f_*(\mathcal{F}|_{U_i \cap U_j}),$$

or otherwise, deduce that $f_*\mathcal{F}$ is a quasi-coherent \mathcal{O}_Y -module. Does the same result continue to hold when both X and Y are arbitrary varieties?

4 Describe the construction of the sheaves $\mathcal{O}_{\mathbf{P}^n}(m)$ on $\mathbf{P}^n(k)$, where *m* denotes any integer and *k* is any algebraically closed field. Identify the group of global sections, and show that its dimension as a vector space over *k* is $\binom{m+n}{n}$. If $i: \mathbf{P}^{n-1} \hookrightarrow \mathbf{P}^n$ denotes the inclusion of \mathbf{P}^{n-1} as a hyperplane, explain briefly why the groups $H^r(\mathbf{P}^{n-1}, \mathcal{F})$ and $H^r(\mathbf{P}^n, i_*\mathcal{F})$ are isomorphic, for any quasi-coherent sheaf \mathcal{F} on \mathbf{P}^{n-1} .

We denote by $h^i(\mathcal{O}_{\mathbf{P}^n}(m))$, for $i \ge 0$, the dimension of $H^i(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(m))$ as a vector space over k. Suppose now we are given the fact that, for r any dimension, $h^i(\mathcal{O}_{\mathbf{P}^r}(m)) = 0$ for all i > 0 and for all m sufficiently large. Using only general results on cohomology, prove by induction that $h^i(\mathcal{O}_{\mathbf{P}^n}(m)) = 0$ for all integers m and for all $0 < i \ne n$, and that $h^n(\mathcal{O}_{\mathbf{P}^n}(m)) = \binom{-m-1}{n}$ for all m.

Assuming the fact that the canonical line bundle on \mathbf{A}^n is free of rank one generated by $dx_1 \wedge dx_2 \wedge \ldots \wedge dx_n$, calculate the canonical line bundle for \mathbf{P}^n , and check that the above formulae are consistent with the statement of Serre Duality.

END OF PAPER

Paper 14