

## MATHEMATICAL TRIPOS Part III

Thursday 2 June, 2005 1.30 to 3.30

## PAPER 10

## EXTREMAL COMBINATORICS

Attempt **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

**1** State and prove the vertex-isoperimetric inequality in the discrete cube (Harper's Theorem).

Let n be odd, and let  $A \subset Q_n$  with  $|A| = 2^{n-1}$ . How small can the vertex-boundary of A be? How large can it be? What are the corresponding answers when n is even?

For any n, and any  $0 \le k \le 2^n$ , let C(k) denote the initial segment of the simplicial order on  $Q_n$  of size k. Which of the following are always true and which can be false? Give proofs or counterexamples as appropriate.

(i) If  $k \leq l$  then the neighbourhood of C(k) is at most as large as that of C(l).

(ii) If  $k\leqslant l\leqslant 2^{n-1}$  then the vertex-boundary of C(k) is at most as large as that of C(l).

(iii) If  $k + l = 2^n$  and  $k \leq l$  then the vertex-boundary of C(k) is at least as large as that of C(l).

**2** What is the *standard* simplicial decomposition of  $S^n$ ? What is a *regular* simplicial decomposition of  $S^n$ ?

Let  $F^n$  be the standard simplicial decomposition of  $S^n$ , and let F be a regular simplicial decomposition of  $S^k$ . Show that every antipodal simplicial map  $f: F \to F^n$  has a positive simplex.

State the Borsuk-Ulam Theorem, and deduce it from what you have just proved. [If you prove an equivalent form of the Borsuk-Ulam Theorem, you must explain why the version you have proved does imply the Borsuk-Ulam Theorem. You may assume the existence and properties of barycentric subdivisions.]

State and prove Kneser's Conjecture.

**3** State and prove the Frankl-Wilson Theorem (on modular intersections).

Let p be prime. Show that if  $A \subset [4p]^{(2p)}$  satisfies  $|x \cap y| \neq p$  for all  $x, y \in A$  then  $|A| \leq 2\binom{4p}{p-1}$ . Indicate clearly where in your proof the factor of '2' in this upper bound comes from.

Show that there does exist such a family A of size  $2\binom{3p-1}{p-1}$ .

Paper 10

4 State and prove the Uniform Covers Theorem.

State and prove the Bollobás-Thomason Box Theorem.

State the Loomis-Whitney Theorem, and deduce it from the Bollobás-Thomason Box Theorem.

For which positive reals a, b, c does there exist a body S in  $\mathbb{R}^3$  of volume 1 such that  $|S_{12}| = a$ ,  $|S_{23}| = b$ ,  $|S_{31}| = c$ ?

## END OF PAPER